Alloying-Driven Phase Stability in Group-VB Transition Metals under Compression

Article Preview

Abstract:

The change in phase stability of Group-VB transition metals (V, Nb, and Ta) due to pressure and alloying is explored by means of first-principles electronic-structure calculations. It is shown that under compression stabilization or destabilization of the ground-state body-centered cubic (bcc) phase of the metal is mainly dictated by the band-structure energy. In the case of alloying the change in phase stability is defined by the interplay between the band-structure and Madelung energies. We show that band-structure effects determine phase stability when a particular Group-VB metal is alloyed with its nearest neighbors within the same d-transition series: the neighbor with less and more d electrons destabilize and stabilize the bcc phase, respectively. When V is alloyed with neighbors of a higher (4d- or 5d-) transition series, both electrostatic Madelung and band-structure energies stabilize the bcc phase. Utilizing the self-consistent ab initio lattice dynamics approach, we show that pressure-induced mechanical instability of bcc V, which results in formation of a rhombohedral (rh) phase at around 60-70 GPa at room temperatures, will prevail significant heating and compression. Furthermore, alloying with Cr decreases the temperature at which stabilization of the bcc phase occurs at elevated pressure.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 258)

Pages:

125-130

Citation:

Online since:

December 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Ding, R. Ahuja, J. Shu, P. Chow, W. Luo and H. K. Mao: Phys. Rev. Lett. Vol. 98 (2007), p.085502.

Google Scholar

[2] B. Lee, R. E. Rudd, J. E. Klepeis, P. Söderlind and A. Landa: Phys. Rev. Vol. B 75 (2007), p.180101(R).

Google Scholar

[3] A. Landa, J. Klepeis, P. Söderlind, I. Naumov, O. Velikokhatnyi, L. Vitos and A. Ruban: J. Phys.: Condens. Matter Vol. 18 (2006), p.5079.

DOI: 10.1088/0953-8984/18/22/008

Google Scholar

[4] A. Landa, J. Klepeis, P. Söderlind, I. Naumov, O. Velikokhatnyi, L. Vitos and A. Ruban: J. Phys. Chem. Sol. Vol. 67 (2006), p. (2056).

DOI: 10.1016/j.jpcs.2006.05.027

Google Scholar

[5] L. Vitos: Computational Quantum Mechanics for Materials Engineers: The EMTO Method and Applications (Springer-Verlag, London 2007).

Google Scholar

[6] J. P. Perdew, K. Burke and M. Ernzerhof: Phys. Rev. Lett. Vol. 77 (1995), p.3865.

Google Scholar

[7] J. S. Faulkner: Prog. Mat. Sci. Vol. 27 (1982), p.1.

Google Scholar

[8] L. Vitos, I. A. Abrikosov and B. Johansson: Phys. Rev. Lett. Vol. 87 (2001), p.156401.

Google Scholar

[9] D. J. Chadi and M. L. Cohen: Phys. Rev. B Vol. 8, (1973) p.5747; S. Froyen: ibid. Vol. 39 (1989), p.3168.

Google Scholar

[10] A. V. Ruban and H. L. Skriver: Phys. Rev. B Vol. 66 (2002), p.024201; A. V. Ruban, S. I. Simak, P. A. Korzhavyi and H. L. Skriver: ibid. Vol. 66 (2002), p.024202.

DOI: 10.1103/physrevb.66.024202

Google Scholar

[11] I. A. Abrikosov, S. I. Simak, B. Johansson, A. V. Ruban and H. L. Skriver: Phys. Rev. B Vol. 56 (1997), p.9319.

Google Scholar

[12] J. M. Wills, M. Alouani, P. Andersson, A. Delin, O. Eriksson and O. Grechnev: Full-Potential Electronic Structure Method (Springer-Verlag, Berlin 2010).

DOI: 10.1007/978-3-642-15144-6_7

Google Scholar

[13] F. D. Murnaghan: Proc. Natl. Acad. Sci. Vol. 30 (1944), p.244.

Google Scholar

[14] M. Mehl, B. M. Klein and D. A. Papaconstantopoulos, in: Intermetallic Compounds: Principles and Practice, Principles, edited by J. H. Westbrook and R. L. Fleisher, volume 1, Wiley London (1995), pp.195-210.

Google Scholar

[15] P. Souvatzis, O. Eriksson, M. I. Katsnelson and S. P. Rudin: Phys. Rev. Lett. Vol. 100 (2008), p.095901; Comp. Mat. Sci. Vol, 44 (2009), p.888.

Google Scholar

[16] A. Landa, P. Söderlind, A. V. Ruban, O. E. Peil and L. Vitos: Phys. Rev. Lett. Vol. 103 (2009), p.235501.

Google Scholar

[17] A. Landa, P. Söderlind, O. I. Velikokhatnyi, I. I. Naumov, A. V. Ruban, O. E. Peil and L. Vitos: Phys. Rev. Vol. B 82 (2010), p.144114.

DOI: 10.1103/physrevb.82.144114

Google Scholar

[18] A. Landa, P. Söderlind and L. H. Yang: Phys. Rev. Vol. B 89 (2014), p.020101(R).

Google Scholar

[19] C. Dai, X. Jin, X. Zhou, J. Liu and J. Hu: J. Phys. D: Appl. Phys. Vol. 34 (2001), p.3064.

Google Scholar