Numerical Study on Localization of Phase Transformation in NiTi Shape Memory Wires

Article Preview

Abstract:

Martensitic phase transformation in NiTi shape memory alloys (SMA) can spread either homogenously or in localized martensitic transformation bands. Transformation band propagation is usually observed in particular loading modes (tension) and geometries of specimen (wires, thin ribbons). In this work, a well established NiTi SMA constitutive model is enhanced so that strain softening of the material response during stress induced phase transition is covered. A nonlocal integral averaging technique is adopted and the model is implemented into a finite element (FE) software. A simple validating simulation of a NiTi superelastic wire loaded in tension is performed.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 258)

Pages:

141-144

Citation:

Online since:

December 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.A. Shaw and S. Kyriakides: Int. J. Plast. Vol. 13 (1998), p.837.

Google Scholar

[2] Q.P. Sun and Z.Q. Li: Int. J. Solids Struct. Vol. 39 (2002), p.3797.

Google Scholar

[3] M.L. Young, M.F.X. Wagner, J. Freenyel, et al.: Acta Mater. Vol. 58 (2010), p.2344.

Google Scholar

[4] M. Kimiecik, J.W. Jones and S.H. Daly: Acta Mater. Vol. 94 (2015), p.214.

Google Scholar

[5] B.J. Reedlunn, C.B. Churchill, E.E. Nelson, et al.: J. Mech. Phys. Solids Vol. 63 (2014), p.506.

Google Scholar

[6] C. Elibol and M.F.X. Wagner: Mat. Sci. Eng. A Vol. 621 (2015), p.76.

Google Scholar

[7] P. Šittner, Y. Liu and V. Novák: J. Mech. Phys. Solids Vol. 53 (2005), p.1719.

Google Scholar

[8] B. Chang, J.A. Shaw and M.A. Iadicola: Continuum Mech. Thermodyn. Vol. 18 (2006), 83.

Google Scholar

[9] M.A. Iadicola and J.A. Shaw: Int. J. Plast. Vol. 20 (2004), p.577.

Google Scholar

[10] K.M. Armattoe, M. Haboussi and T. Ben Zineb: Int. J. Solids Struct. 51 (2014), p.1208.

Google Scholar

[11] H. Ahmadian, S.H. Ardakani and S. Mohammadi: Int. J. Solids and Struct. Vol. 63 (2015), p.167.

Google Scholar

[12] H. Badnava, M. Kadkhodaei and M. Mashayekhi: J. Int. Mater. Syst. Struct. Vol. 26 (2015), p.2531.

Google Scholar

[13] J. Racek, M. Stora, P. Šittner, et al.: Shap. Mem. Superelasticity Vol. 1 (2015), p.204.

Google Scholar

[14] P. Sedlák, M. Frost, B. Benešová, et al.: Int. J. Plast. Vol. 39 (2012), p.132.

Google Scholar

[15] M. Frost, B. Benešová and P. Sedlák: Math. Mech. Solids Vol. 21 (2016), p.358.

Google Scholar

[16] M. Frost, P. Sedlák, L. Kadeřávek, et al.: J. Int. Mat. Syst. Struct. Vol. 27 (2016), p. (1927).

Google Scholar

[17] Z.P. Bažant and M. Jirásek: J. Eng. Mech. Vol. 128 (2002), p.1119.

Google Scholar

[18] M. Jirásek and S. Rolshoven: Int. J. Solids Struct. Vol. 46 (2009), p.2239.

Google Scholar

[19] P. Sedmák, J. Pilch, L. Heller, et al.: Science Vol. 353 (2016), p.559.

Google Scholar