Shape of Small Prismatic Dislocation Loops in Tungsten and Iron

Article Preview

Abstract:

Small prismatic dislocation loops in BCC metals have Burgers vectors either ½<111> or <100> and are usually close to circular shape. In atomistic simulations constructing prismatic dislocation loops of different shapes is straightforward, however, it is difficult to compare their formation energies, since loops of different shapes or different Burgers vectors do not necessarily have exactly the same size. Here we develop a general method to correctly compare loops of similar size but different shapes and the Burgers vectors. This method is combined with molecular statics simulations to identify the most energetically favorable shapes of prismatic dislocation loops in elastically isotropic tungsten and anisotropic α-iron.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 258)

Pages:

97-101

Citation:

Online since:

December 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B.C. Masters, Philos. Mag. 11 (1965) 881.

Google Scholar

[2] Z. Yao, M. Hernández-Mayoral, M.L. Jenkins, M.A. Kirk, Philos. Mag. 88 (2008) 2851.

Google Scholar

[3] X. Yi et. al. , Phil. Mag. Vol. 93, No. 14, (2013), 1715.

Google Scholar

[4] D. R. Mason et. al. , J. of Phys.: Condens. Matter 26 (2014), 375701.

Google Scholar

[5] S. P. Fitzgerald, Z. Yao, Phil. Mag. Letters 89(9) (2009) 581.

Google Scholar

[6] S. Aubry et. al. , Modelling and Simulation in Mater. Sci. and Eng., Vol. 19, Num. 6, (2011).

Google Scholar

[7] S. L. Dudarev, R. Bullough, and P. M. Derlet, Phys. Rev. Lett. 100 (2008) 135503.

Google Scholar

[8] J. Fikar, R. Schäublin, Nuc. Inst. & Met. in Phys. Res. Section B, Vol. 267/18 (2009) 3218.

Google Scholar

[9] J.P. Hirth, J. Lothe. In: Theory of Dislocations (1982).

Google Scholar

[10] J. Fikar, R. Gröger, Acta Mater. 99 (2015) 392.

Google Scholar

[11] R. Alexander et. al. , M. R. Gilbert, S. L. Dudarev, Phys. Rev. B 94 (2016) 024103.

Google Scholar

[12] S. Plimpton, J Comp Phys, 117 (1995) 1, http: /lammps. sandia. gov.

Google Scholar

[13] G. J. Ackland, R. Thetford, Phil. Mag. A, 56 (1987) 15.

Google Scholar

[14] M.I. Mendelev et. al. , Phil. Mag 83, No 35 (2003) 3977.

Google Scholar

[15] P.M. Derlet, D. Nguyen-Mahn, S.L. Dudarev, Phys. Rev. B 76 (2007) 054107.

Google Scholar

[16] J. Wang et. al. , Model. and Simul. in Mat. Sci. and Eng. 22 (2014) 015004.

Google Scholar

[17] M. -C. Marinica et. al. , J. of Phys.: Cond. Mat. 25 (2013) 395502.

Google Scholar

[18] M.I. Mendelev et. al. , J. Phys. Cond. Mat. Vol. 16 (2004) S2629.

Google Scholar

[19] L. Malerba et. al. , J. Nuc. Mat. 406 (2010) 19.

Google Scholar