Nickel Bioleaching at Elevated pH: Research and Application

Article Preview

Abstract:

Biohydrometallurgy has broad application prospect in the treatment of low-grade nickel sulfide ore. However, quite a number of nickel sulfide deposits are associated with basic gangue minerals such as contain olivine, serpentine. The high basic gangue minerals will lead to a higher acid consumption and make it difficult to bioleach at pH below 2.5. It is crucial to improve processes and adapt bacteria with this kind of ore. This paper reviews the experimental researches and industrial applications for bioleaching of the high acid consumption nickel sulfide ores. It is suggested that bioleaching at elevated pH will have similar leaching rate compared with pH below 2.5, meanwhile the cost will be decreased remarkably due to a lower acid consumption and less dissolved impurity ions.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 262)

Pages:

197-201

Citation:

Online since:

August 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. L. Chen, Nickel deposite, Beijing: Geology Publishing House. (1993) 13-19.

Google Scholar

[2] J. Ren, Research on risk assessment and real option of overseas mineral resources project investment, Beijing: China University of Geosciences (Beijing). (2014) 38-48.

Google Scholar

[3] M. W. Liu, Geochemical comparison of several nickel deposits in China, Xi'an: Northwest University. (2003) 7-9.

Google Scholar

[4] B. W. Chen, S. Liu, X. Y. Liu, J. K. Wen, Study on bioleaching process of low-grade nickel and copper sulfide ore, Nonferrous Metals (Extractive Metallurgy). 1 2011 2-4.

Google Scholar

[5] B. W. Chen, L. L. Cai, B. Wu, X. Liu, J. K. Wen, Investigation of bioleaching of a low grade nickel-cobalt-copper sulfide ore with high magnesium as olivine and serpentine from Lao, Hu X, KinTakLau A. Switzerland: Trans Tech Publ. (2013) 396-400.

DOI: 10.4028/www.scientific.net/amr.825.396

Google Scholar

[6] S. J. Zhen, Z. Q. Yan, Y. S. Zhang, J. Wang, M. Campbell, W. Q. Qin, Column bioleaching of a low grade nickel-bearing sulfide ore containing high magnesium as olivine, chlorite and antigorite, Hydrometallurgy. 96(4) (2009) 337-341.

DOI: 10.1016/j.hydromet.2008.11.007

Google Scholar

[7] W. Sand, T. Gehrke, P. G. Jozsa, A. Schippers, (Bio)chemistry of bacterial leaching—direct vs. indirect bioleaching, Hydrometallurgy, 59 (2001) 159-175.

DOI: 10.1016/s0304-386x(00)00180-8

Google Scholar

[8] S. Mitsunobu, M. Zhu, Y. Takeichi, T. Ohigashi, H. Suga, M. Jinno, H. Makita, M. Sakata, K. Ono, K. Mase, Y. Takahashi, Direct detection of Fe(II) in extracellular polymeric substances (EPS) at the mineral-microbe interface in bacterial pyrite leaching, Microbes & Environments. 31(1) (2016).

DOI: 10.1264/jsme2.me15137

Google Scholar

[9] L. Ahonen, O. H. Tuovinen, Bacterial leaching of complex sulfide ore samples in bench-scale column reactors, Hydrometallurgy. 37 (1995) 1-21.

DOI: 10.1016/0304-386x(94)00011-q

Google Scholar

[10] G . Meruane, T. Vargas, Bacterial oxidation of ferrous iron by Acidithiobacillus ferrooxidans in the pH range 2. 5–7. 0, Hydrometallurgy. 71 (2003) 149-158.

DOI: 10.1016/s0304-386x(03)00151-8

Google Scholar

[11] J. Plumb, R. Muddle, P. Franzmann, Effect of pH on rates of iron and sulfur oxidation by bioleaching organisms, Miner. Eng. 21 (2008) 76-82.

DOI: 10.1016/j.mineng.2007.08.018

Google Scholar

[12] R. A. Cameron, R. Lastra, W. D. Gould, S. Mortazavi, Y. Thibault, P. L. Bedard, L. Morin, D. W. Koren, K. J. Kennedy, Bioleaching of six nickel sulphide ores with differing mineralogies in stirred-tank reactors at 30° C, Miner. Eng. 49 (2013).

DOI: 10.1016/j.mineng.2011.03.016

Google Scholar

[13] R. A. Cameron, R. Lastra, S. Mortazavi, P. L. Bedard, L. Morin, W. D. Gould, K. J. Kennedy, Bioleaching of a low-grade ultramafic nickel sulphide ore in stirred-tank reactors at elevated pH, Hydrometallurgy. 97 (2009) 213-220.

DOI: 10.1016/j.hydromet.2009.03.002

Google Scholar

[14] R. A. Cameron, C. W. Yeung, C. W. Greer, W. D. Gould, S. Mortazavi, P. L. Bédard, L. Morin, L. Lortie, O. Dinardo, K. J. Kennedy, The bacterial community structure during bioleaching of a low-grade nickel sulphide ore in stirred-tank reactors at different combinations of temperature and pH, Hydrometallurgy 104 (2010).

DOI: 10.1016/j.hydromet.2010.06.005

Google Scholar

[15] W. Q. Qin, S. J. Zhen, Z. Q. Yan, M Campbell, J. Wang, K. Liu, Y. S. Zhang, Heap bioleaching of a low-grade nickel-bearing sulfide ore containing high levels of magnesium as olivine, chlorite and antigorite, Hydrometallurgy 98 (2009) 58-65.

DOI: 10.1016/j.hydromet.2009.03.017

Google Scholar

[16] J Fewings, S Seet, Bacterial leaching at elevated pH using BioHeap™ technology, Taylor A. Perth: ALTA Metallurgical Services. (2012) 370-377.

Google Scholar