[1]
H. L. Chen, Nickel deposite, Beijing: Geology Publishing House. (1993) 13-19.
Google Scholar
[2]
J. Ren, Research on risk assessment and real option of overseas mineral resources project investment, Beijing: China University of Geosciences (Beijing). (2014) 38-48.
Google Scholar
[3]
M. W. Liu, Geochemical comparison of several nickel deposits in China, Xi'an: Northwest University. (2003) 7-9.
Google Scholar
[4]
B. W. Chen, S. Liu, X. Y. Liu, J. K. Wen, Study on bioleaching process of low-grade nickel and copper sulfide ore, Nonferrous Metals (Extractive Metallurgy). 1 2011 2-4.
Google Scholar
[5]
B. W. Chen, L. L. Cai, B. Wu, X. Liu, J. K. Wen, Investigation of bioleaching of a low grade nickel-cobalt-copper sulfide ore with high magnesium as olivine and serpentine from Lao, Hu X, KinTakLau A. Switzerland: Trans Tech Publ. (2013) 396-400.
DOI: 10.4028/www.scientific.net/amr.825.396
Google Scholar
[6]
S. J. Zhen, Z. Q. Yan, Y. S. Zhang, J. Wang, M. Campbell, W. Q. Qin, Column bioleaching of a low grade nickel-bearing sulfide ore containing high magnesium as olivine, chlorite and antigorite, Hydrometallurgy. 96(4) (2009) 337-341.
DOI: 10.1016/j.hydromet.2008.11.007
Google Scholar
[7]
W. Sand, T. Gehrke, P. G. Jozsa, A. Schippers, (Bio)chemistry of bacterial leaching—direct vs. indirect bioleaching, Hydrometallurgy, 59 (2001) 159-175.
DOI: 10.1016/s0304-386x(00)00180-8
Google Scholar
[8]
S. Mitsunobu, M. Zhu, Y. Takeichi, T. Ohigashi, H. Suga, M. Jinno, H. Makita, M. Sakata, K. Ono, K. Mase, Y. Takahashi, Direct detection of Fe(II) in extracellular polymeric substances (EPS) at the mineral-microbe interface in bacterial pyrite leaching, Microbes & Environments. 31(1) (2016).
DOI: 10.1264/jsme2.me15137
Google Scholar
[9]
L. Ahonen, O. H. Tuovinen, Bacterial leaching of complex sulfide ore samples in bench-scale column reactors, Hydrometallurgy. 37 (1995) 1-21.
DOI: 10.1016/0304-386x(94)00011-q
Google Scholar
[10]
G . Meruane, T. Vargas, Bacterial oxidation of ferrous iron by Acidithiobacillus ferrooxidans in the pH range 2. 5–7. 0, Hydrometallurgy. 71 (2003) 149-158.
DOI: 10.1016/s0304-386x(03)00151-8
Google Scholar
[11]
J. Plumb, R. Muddle, P. Franzmann, Effect of pH on rates of iron and sulfur oxidation by bioleaching organisms, Miner. Eng. 21 (2008) 76-82.
DOI: 10.1016/j.mineng.2007.08.018
Google Scholar
[12]
R. A. Cameron, R. Lastra, W. D. Gould, S. Mortazavi, Y. Thibault, P. L. Bedard, L. Morin, D. W. Koren, K. J. Kennedy, Bioleaching of six nickel sulphide ores with differing mineralogies in stirred-tank reactors at 30° C, Miner. Eng. 49 (2013).
DOI: 10.1016/j.mineng.2011.03.016
Google Scholar
[13]
R. A. Cameron, R. Lastra, S. Mortazavi, P. L. Bedard, L. Morin, W. D. Gould, K. J. Kennedy, Bioleaching of a low-grade ultramafic nickel sulphide ore in stirred-tank reactors at elevated pH, Hydrometallurgy. 97 (2009) 213-220.
DOI: 10.1016/j.hydromet.2009.03.002
Google Scholar
[14]
R. A. Cameron, C. W. Yeung, C. W. Greer, W. D. Gould, S. Mortazavi, P. L. Bédard, L. Morin, L. Lortie, O. Dinardo, K. J. Kennedy, The bacterial community structure during bioleaching of a low-grade nickel sulphide ore in stirred-tank reactors at different combinations of temperature and pH, Hydrometallurgy 104 (2010).
DOI: 10.1016/j.hydromet.2010.06.005
Google Scholar
[15]
W. Q. Qin, S. J. Zhen, Z. Q. Yan, M Campbell, J. Wang, K. Liu, Y. S. Zhang, Heap bioleaching of a low-grade nickel-bearing sulfide ore containing high levels of magnesium as olivine, chlorite and antigorite, Hydrometallurgy 98 (2009) 58-65.
DOI: 10.1016/j.hydromet.2009.03.017
Google Scholar
[16]
J Fewings, S Seet, Bacterial leaching at elevated pH using BioHeap™ technology, Taylor A. Perth: ALTA Metallurgical Services. (2012) 370-377.
Google Scholar