Microbial Survey on Industrial Bioleaching Heap by High-Throughput 16S Sequencing and Metagenomics Analysis

Article Preview

Abstract:

Bioleaching processes are usually open systems where introduced and native microorganisms survive to changes in pH, temperature, salt and metal concentration, among others. Spatial and temporal description of the microbial community could be relevant for better comprehension of copper extraction process and help in the development of operative procedures to improve the metal extraction. We performed metagenomics and high-throughput sequencing of 16S rRNA genes analyses on samples from Escondida mine bioleaching heap and laboratory columns tests. Archaeal community structure in samples was assessed using three pairs of Archaea-specific primers, and results were highly depending on the primers pairs used. Similarly, three pairs of Bacteria-specific primers were used to assess the bacterial community. Moreover, according to the metagenomics analysis, At. thiooxidans, F. acidarmanus, Leptospirillum spp., Acidiphilium sp. JA12-A1, Acidiphilium spp., At. ferrivorans, and Leptospirillum ferriphilum were the most representative microorganisms. The repercussion of the different methodologies and outputs in the characterization of the bioleaching microbial community is discussed. A better understanding of the microbial community in bioleaching processes could improve the analysis regarding environmental changes in the heap process, its metallurgical performance and, can be used to assist in the decision-making process.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 262)

Pages:

219-223

Citation:

Online since:

August 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Wang, P.Y. Qian, Conservative fragments in bacterial 16S rRNA genes and primer design for 16S ribosomal DNA amplicons in metagenomic studies, PLoS One. 4(2009) e7401.

DOI: 10.1371/journal.pone.0007401

Google Scholar

[2] R. Sipos, A.J. Székely, M. Palatinszky, S. Révész, K. Márialigeti, M. Nikolausz, Effect of primer mismatch, annealing temperature and PCR cycle number on 16S rRNA gene-targetting bacterial community analysis, FEMS Microbiol. Ecol. 60 (2007).

DOI: 10.1111/j.1574-6941.2007.00283.x

Google Scholar

[3] M.L. Sogin, H.G. Morrison, J.A. Huber, D. Mark Welch, S.M. Huse, P.R. Neal, J.M. Arrieta, G.J. Herndl, Microbial diversity in the deep sea and the underexplored rare biosphere, Proc. Natl. Acad. Sci. U. S. A. 103 (2006) 12115-12120.

DOI: 10.1073/pnas.0605127103

Google Scholar

[4] S.K. Ames, D.A. Hysom, S.N. Gardner, G.S. Lloyd, M.B. Gokhale, J.E. Allen, Scalable metagenomic taxonomy classification using a reference genome database, Bioinformatics. 29 (2013) 2253-2260.

DOI: 10.1093/bioinformatics/btt389

Google Scholar

[5] K. Břinda, M. Sykulski, G. Kucherov, Spaced seeds improve k-mer-based metagenomic classification, Bioinformatics. 31 (2015) 3584-3592.

DOI: 10.1093/bioinformatics/btv419

Google Scholar

[6] S.S. Minot, N. Krumm, N. B. Greenfield, One Codex: A Sensitive and Accurate Data Platform for Genomic Microbial Identification. bioRxiv (2015) 027607. doi: https: /doi. org/10. 1101/027607.

DOI: 10.1101/027607

Google Scholar

[7] M. Acosta, P. Galleguillos, Y. Ghorbani, P. Tapia, Y. Contador, A. Velásquez, C. Espoz, C. Pinilla, C. Demergasso, Variation in microbial community from predominantly mesophilic to thermotolerant and moderately thermophilic species in an industrial copper heap bioleaching operation, Hydrometallurgy. 150 (2014).

DOI: 10.1016/j.hydromet.2014.09.010

Google Scholar

[8] S. Marín, M. Acosta, P. Galleguillos, Y. Villegas, D. Cautivo, V. Zepeda, C. Demergasso, Transcriptional dynamics study of Calvin-Benson- Bassham (CBB) genes in Acidithiobacillus thiooxidans growing under different carbon dioxide availability: submitted to Solid State Phenomena (2017).

DOI: 10.4028/www.scientific.net/ssp.262.376

Google Scholar

[9] X. Zhang, J. Niu, Y. Liang, X. Liu, H. Yin, Metagenome-scale analysis yields insights into the structure and function of microbial communities in a copper bioleaching heap. BMC Genet. 17 (2016) 21. doi: 10. 1186/s12863-016-0330-4.

DOI: 10.1186/s12863-016-0330-4

Google Scholar

[10] Y. Xiao, X. Liu, L. Ma, Y. Liang, J. Niu, Y. Gu, X. Zhang, X. Hao, W. Dong, S. She, H. Yin, Microbial communities from different subsystems in biological heap leaching system play different roles in iron and sulfur metabolisms, Appl. Microbiol. Biotechnol. 100 (2016).

DOI: 10.1007/s00253-016-7537-1

Google Scholar

[11] X. Liu, B. Chen, J. Chen, M. Zhang, J. Wen, D. Wang, R. Ruan, Spatial variation of microbial community structure in the Zijinshan commercial copper heap bioleaching plant, Miner. Eng. 94 (2016) 76-82.

DOI: 10.1016/j.mineng.2016.05.008

Google Scholar

[12] Y. Jia, H. Sun, D. Chen, H. Gao, R. Ruan, Characterization of microbial community in industrial bioleaching heap of copper sulfide ore at Monywa mine, Myanmar, Hydrometallurgy. 164 (2016) 355-361.

DOI: 10.1016/j.hydromet.2016.07.007

Google Scholar

[13] A.P. Yelton, B.C. Thomas, S.L. Simmons, P. Wilmes, A. Zemla, M.P. Thelen,N. Justice, J.F. Banfield, A semi-quantitative, synteny-based method to improve functional predictions for hypothetical and poorly annotated bacterial and archaeal genes. PLoS Comput. Biol. 7 (2011).

DOI: 10.1371/journal.pcbi.1002230

Google Scholar