Recent Advances in Biomining and Microbial Characterisation

Article Preview

Abstract:

Since the discovery of bioleaching microorganisms and their role in metal extraction in the 1940s, a number of technical approaches have been developed to enhance microbially catalysed solubilisation of metals from ores, concentrates and waste materials. Biomining has enabled the transformation of uneconomic resources to reserves, and thus help to alleviate the challenges related to continually declining ore grades. The rapid advancement of microbial characterisation methods has vastly increased our understanding of microbial communities in biomining processes. The objective of this paper is to review the recent advances in biomining processes and microbial characterisation.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 262)

Pages:

33-37

Citation:

Online since:

August 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.H. Kaksonen, F. Perrot, C. Morris, S. Rea, B. Benvie, P. Austin, R. Hackl, Evaluation of submerged bio-oxidation concept for refractory gold ores, Hydrometallurgy 141 (2014) 117-125.

DOI: 10.1016/j.hydromet.2013.10.012

Google Scholar

[2] C.A. du Plessis, N.E. Mora-Huertas, F. Hilario Guimaraes, K.G. Bowes, Sulfide ore leaching process, U.S. Patent 9, 085, 812 B2 (2015).

Google Scholar

[3] A.H. Kaksonen, C. Morris, S. Rea, J. Li, K.M. Usher, R.G. McDonald, F. Hilario, T. Hosken, M. Jackson, C.A. du Plessis, Biohydrometallurgical iron oxidation and precipitation: Part II – jarosite precipitate characterisation and acid recovery by conversion to hematite, Hydrometallurgy 147-148 (2014).

DOI: 10.1016/j.hydromet.2014.04.015

Google Scholar

[4] A.H. Kaksonen, C. Morris, S. Rea, J. Li, J. Wylie, K.M. Usher, M.P. Ginige, K.Y. Cheng, F. Hilario, C.A. du Plessis, Biohydrometallurgical iron oxidation and precipitation: Part I – Effect of pH on process performance, Hydrometallurgy 147-148 (2014b) 255-263.

DOI: 10.1016/j.hydromet.2014.04.016

Google Scholar

[5] D.B. Johnson, C.A. du Plessis, Biomining in reverse gear: using bacteria to extract metals from oxidized ores, Miner. Eng. 75 (2015) 2-5.

DOI: 10.1016/j.mineng.2014.09.024

Google Scholar

[6] C.G. Bryan, E.L. Watkin, T.J. McCredden, Z.R. Wong, S.T.L. Harrison, A.H. Kaksonen, The use of pyrite as a source of lixiviant in the bioleaching of electronic waste, Hydrometallurgy 152 (2015) 33-43.

DOI: 10.1016/j.hydromet.2014.12.004

Google Scholar

[7] A.H. Kaksonen, S. Särkijärvi, E. Peuraniemi, S. Junnikkala, J.A. Puhakka, O.H. Tuovinen, Metal biorecovery in acid solutions from a copper smelter slag, Hydrometallurgy 168 (2017) 135-140.

DOI: 10.1016/j.hydromet.2016.08.014

Google Scholar

[8] A. Schippers, S. Hedrich, J. Vasters, M. Drobe, W. Sand, S. Willscher, Biomining: Metal recovery from ores with microorganisms, in: A. Schippers, F. Glombitza, W. Sand (Eds. ), Geobiotechnology, Advances in Biochemical Engineering/Biotechnology, Springer, Berlin Heidelberg, 2014, pp.1-47.

DOI: 10.1007/10_2013_216

Google Scholar

[9] J. Mäkinen, T. Lavonen, P. Kinnunen, Selective bioleaching of uranium and phosphorus, Proceedings of the Biohydrometallurgy 2016 Conference, Falmouth, Cornwall, UK.

Google Scholar

[10] D.W. Reed, Y. Fujita, D.L. Daubaras, Y. Jiao, V.S. Thompson, Bioleaching of rare elements from waste phosphors and cracking catalysts, Hydrometallurgy 166 (2016) 34-40.

DOI: 10.1016/j.hydromet.2016.08.006

Google Scholar

[11] A.H. Kaksonen, B. M/ Mudunuru, R. Hackl, The role of microorganisms in gold processing and recovery – A review, Hydrometallurgy 142 (2014c) 70-83.

DOI: 10.1016/j.hydromet.2013.11.008

Google Scholar

[12] S.M. Rea, N.J. McSweeney, B.P. Degens, C. Morris, H.M. Siebert, A.H. Kaksonen, Salt-tolerant microorganisms potentially useful for bioleaching operations where fresh water is scarce, Miner. Eng. 75 (2015) 126-132.

DOI: 10.1016/j.mineng.2014.09.011

Google Scholar

[13] N.J. Boxall, S.M. Rea, J. Li, C. Morris, A.H. Kaksonen, Effect of high sulfate concentrations on chalcopyrite bioleaching and molecular characterisation of the bioleaching microbial community, Hydrometallurgy 168 (2017) 32-39.

DOI: 10.1016/j.hydromet.2016.07.006

Google Scholar

[14] W.S. Dunbar, Biotechnology and the mine of tomorrow, Trends Biotechnol. 35 (2017) 79-89.

Google Scholar

[15] A. -K. Halinen, N.J. Beecroft, K. Määttä, P. Nurmi, K. Laukkanen, A.H. Kaksonen, M. Riekkola-Vanhanen, J.A. Puhakka, Microbial community dynamics during a demonstration-scale bioleach leasing operation, Hydrometallugy 125-126 (2012) 34-41.

DOI: 10.1016/j.hydromet.2012.05.001

Google Scholar

[16] J.P. Cárdenas, R. Quatrini, D.S. Holmes, Genomic and metagenomics challenges and opportunities for bioleaching: a mini-review, Res. Microbiol. 167 (2016) 529-538.

DOI: 10.1016/j.resmic.2016.06.007

Google Scholar

[17] Y. Deng, Y. -H. Jiang, Y. Yang, Z. He, F. Luo, J. Zhou, Molecular ecological network analysis, BMC Bioinformatics 13: 113 (2012) 1-20.

Google Scholar

[18] K.M. Usher, J.A. Shaw, A.H. Kaksonen, M. Saunders, Elemental analysis of extracellular polymeric substances and granules in chalcopyrite bioleaching microbes, Hydrometallurgy 104 (2010) 376-381.

DOI: 10.1016/j.hydromet.2010.02.028

Google Scholar