Mechanical Properties of Hydroxyapatite Reinforced 45S5

Article Preview

Abstract:

Hydroxyapatite (HA) has similar constituent with natural bone mineral and is able to evoke apatite formation on the bone interface. Similarly, bioactive glass (BG) such as 45S5 has the ability to induce bone formation when exposed to physiological environment. However, both materials have drawbacks in mechanical properties such as brittleness and low compressive strength. Hence, HA-BG composite has potential for enhance properties. The current work aims to assess the effects of BG addition in HA system focusing on mechanical properties.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 264)

Pages:

29-32

Citation:

Online since:

September 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G.T. El-Bassyouni, H.H. Beherei, K.R. Mohamed, S.H. Kenawy, Fabrication and bioactivity behavior of HA/bioactive glass composites in the presence of calcium hexaboride, Materials Chemistry and Physics. 175 (2016) 92-99.

DOI: 10.1016/j.matchemphys.2016.02.072

Google Scholar

[2] D. Bellucci, A. Sola, A. Anesi, R. Salvatori, L. Chiarini, V. Cannillo, Bioactive glass/hydroxyapatite composites: Mechanical properties and biological evaluation, Materials Science and Engineering C. 51 (2015) 196–205.

DOI: 10.1016/j.msec.2015.02.041

Google Scholar

[3] H. Demirkiran, Y. Hu, L. Zuin, N. Appathurai, P. B. Aswath, XANES analysis of calcium and sodium phosphates and silicates and hydroxyapatite–Bioglass®45S5 co-sintered bioceramics, Materials Science and Engineering C. 31 (2011) 134–143.

DOI: 10.1016/j.msec.2010.08.009

Google Scholar

[4] D. Bellucci, A. Sola, L. Lusvarghi, V. Cannillo, Hydroxyapatite–tricalcium phosphate–bioactive glass ternary composites, Ceramics International. 40 (2014) 3805–3808.

DOI: 10.1016/j.ceramint.2013.08.018

Google Scholar

[5] Z. Yazdanpanah, M.E. Bahrololoom, B. Hashemi, Evaluating morphology and mechanical properties of glass-reinforced natural hydroxyapatite composites, journal of the mechanical behavior of biomedical materials. 41 (2015) 36–42.

DOI: 10.1016/j.jmbbm.2014.09.021

Google Scholar

[6] M. M. Sebdani, M.H. Fathi, Novel hydroxyapatite–forsterite–bioglass nanocomposite coatings with improved mechanical properties, Journal of Alloys and Compounds. 509 (2011) 2273–2276.

DOI: 10.1016/j.jallcom.2010.10.202

Google Scholar

[7] F.L.S. Carvalho, C.S. Borges, J.R.T. Branco, M. M. Pereira, Structural analysis of hydroxyapatite/bioactive glass composite coatings obtained by plasma spray processing, Journal of Non-Crystalline Solids. 247 (1999) 64-68.

DOI: 10.1016/s0022-3093(99)00033-2

Google Scholar

[8] M.M. Sebdani, M.H. Fathi, Preparation and characterization of hydroxyapatite–forsterite–bioactive glass nanocomposite coatings for biomedical applications, Ceramics International. 38 (2012) 1325–1330.

DOI: 10.1016/j.ceramint.2011.09.008

Google Scholar

[9] H. Ghomi, M.H. Fathi, H. Edris, Effect of the composition of hydroxyapatite/bioactive glass nanocomposite foams on their bioactivity and mechanical properties, Materials Research Bulletin. 47 (2012) 3523–3532.

DOI: 10.1016/j.materresbull.2012.06.066

Google Scholar

[10] Y. Hu, X. Miao, Comparison of hydroxyapatite ceramics and hydroxyapatite/borosilicate glass composites prepared by slip casting, Ceramics International. 30 (2004) 1787–1791.

DOI: 10.1016/j.ceramint.2003.12.119

Google Scholar

[11] H. Demirkiran, A. Mohandas, M. Dohi, A. Fuentes, K. Nguyen, P. Aswath, Bioactivity and mineralization of hydroxyapatite with bioglass as sintering aid and bioceramics with Na3Ca6(PO4)5 and Ca5(PO4)2SiO4 in a silicate matrix, Materials Science and Engineering C. 30 (2010).

DOI: 10.1016/j.msec.2009.10.011

Google Scholar

[12] K. Lin, J. Chang, Z. Liu, Y. Zeng, R. Shen, Fabrication and characterization of 45S5 bioglass reinforced macroporous calcium silicate bioceramics, Journal of the European Ceramic Society. 29 (2009) 2937–2943.

DOI: 10.1016/j.jeurceramsoc.2009.04.025

Google Scholar

[13] G.T. El-Bassyouni, H.H. Beherei, K.R. Mohamed, S.H. Kenawy, Fabrication and bioactivity behavior of HA/bioactive glass composites in the presence of calcium hexaboride, Materials Chemistry and Physics. 175 (2016) 92-99.

DOI: 10.1016/j.matchemphys.2016.02.072

Google Scholar

[14] N.A. Zarifah, K.A. Matori, H.A.A. Sidek, Z.A. Wahab, M.A. Mohd Salleh, N. Zainuddin, M.Z.A. Khiri, N.S. Farhana, N.A.S. Omar, Effect of hydroxyapatite reinforced with 45S5 glass on physical, structural and mechanical properties, Procedia Chemistry. 19 ( 2016 ) 30 – 37.

DOI: 10.1016/j.proche.2016.03.008

Google Scholar

[15] R. Ravarian, F. Moztarzadeh, M.S. Hashjin, S.M. Rabiee, P. Khoshaklagh, M. Tahriri, Systhesis, characterization and bioactivity investigation of bioglass/hydroxyapatite composite, Ceramic International. 36 (2010) 291-297.

DOI: 10.1016/j.ceramint.2009.09.016

Google Scholar

[16] C. Sun, X. Tiana, L. Wang, Y. Liu, C.M. Wirth, J. Günster, D. Lia, Z. Jin, Effect of particle size gradation on the performance of glass-ceramic 3D printing process, Ceramics International. 1 (2017) 578–584.

DOI: 10.1016/j.ceramint.2016.09.197

Google Scholar

[17] J.C. Knowles, S. Talal, J.D. Santos, Sintering effects in a glass reinforced hydroxyapatite, Biomaterials. 17 (1996) 1437-1442.

DOI: 10.1016/0142-9612(96)87287-5

Google Scholar

[18] N.A. Zarifah, W.F. Limb, K.A. Matori, H.A.A. Sidek, Z.A. Wahab, N. Zainuddin, M.A. Salleh, B.N. Fadilah, A.N. Fauzana, An elucidating study on physical and structural properties of 45S5 glass at different sintering temperatures, Journal of Non-Crystalline Solids. 412 (2015).

DOI: 10.1016/j.jnoncrysol.2015.01.005

Google Scholar