Effect of Particle Size of Cordierite Powder on Pore Structure of Porous Cordierite

Article Preview

Abstract:

Porous cordierite is among the special porous ceramic due to its extensive properties. In this research, porous cordierite was fabricated through gelcasting method. A mixture of raw materials (SiO2, Al2O3 and MgO) was melted at 1550 °C followed by quenching in water to produce a glass. Then the formed glass powder were milled for 1, 3, 5, 7 and 9 hours to obtain various particle sizes of cordierite powder. Cordierite powder produced was then used to prepare 3-D porous cordierite ceramic using gelcasting method. The cordierite pellets were characterized. Surface morphology was analysed via Scanning Electron Microscope (SEM) to observe the pore structure of porous cordierite formed from powder with various particle sizes.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 264)

Pages:

46-49

Citation:

Online since:

September 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Fuji, Y. Shiroki, R. L. Menchavez, H. Takegami, M. Takahashi, H. Suzuki, S. Izuhara, and T. Yokoyama, Fabrication of cordierite filter by in-situ solidification for high temperature dust collection, Powder Technol., vol. 172, no. 1, p.57–62, Mar. (2007).

DOI: 10.1016/j.powtec.2006.10.029

Google Scholar

[2] J. Luyten, S. Mullens, J. Cooymans, a. -M. De Wilde, and I. Thijs, New Processing Techniques of Ceramic Foams, Adv. Eng. Mater., vol. 5, no. 10, p.715–718, Oct. (2003).

DOI: 10.1002/adem.200300381

Google Scholar

[3] J. M. Benito, X. Turrillas, G. J. Cuello, a. H. De Aza, S. De Aza, and M. a. Rodríguez, J. Eur. Ceram. Soc., vol. 32, no. 2, p.371–379, Oct. (2011).

DOI: 10.1016/j.jeurceramsoc.2011.09.010

Google Scholar

[4] R. Bejjaoui, a. Benhammou, L. Nibou, B. Tanouti, J. P. Bonnet, a. Yaacoubi, and a. Ammar, Appl. Clay Sci., vol. 49, no. 3, p.336–340, Jul. (2010).

DOI: 10.1016/j.clay.2010.06.004

Google Scholar

[5] H. Kim, S. Lee, Y. Han, and J. Park, Control of pore size in ceramic foams: influence of surfactant concentration, Mater. Chem. Phys., vol. 113, p.441–444, (2009).

DOI: 10.1016/j.matchemphys.2008.07.099

Google Scholar

[6] Suzuki, H., Saito, H., & Hayashi, T. (1992). Thermal and electrical properties of alkoxy-derived cordierite ceramics. Journal of the European Ceramic Society, 9(5), 365–371.

DOI: 10.1016/0955-2219(92)90095-u

Google Scholar

[7] J. C. Le Huec, T. Schaeverbeke, D. Clement, J. Faber, and a. Le Rebeller, Biomaterials, vol. 16, no. 2, p.113–118, Jan. (1995).

DOI: 10.1016/0142-9612(95)98272-g

Google Scholar

[8] B. Kim, J. Lee, J. Kim, and T. Ikegami, Rapid rate sintering of nanocrystalline indium tin oxide ceramics: particle size effect, Mater. Lett., no. January, p.114–119, (2002).

DOI: 10.1016/s0167-577x(01)00377-9

Google Scholar

[9] J. Tulliani and M. Lombardi, Development and mechanical characterization of novel ceramic foams fabricated by gel-casting, J. Eur. …, (2013).

Google Scholar

[10] W. G. Fahrenholtz, G. E. Hilmas, S. C. Zhang, and S. Zhu, Pressureless Sintering of Zirconium Diboride: Particle Size and Additive Effects, J. Am. Ceram. Soc., vol. 91, no. 5, p.1398–1404, May (2008).

DOI: 10.1111/j.1551-2916.2007.02169.x

Google Scholar

[11] T. Belytschko, H. Chen, J. Xu, and G. Zi, Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment, Int. J. Numer. Methods Eng., vol. 58, no. 12, p.1873–1905, Nov. (2003).

DOI: 10.1002/nme.941

Google Scholar