Enhanced Dielectric Properties of Polyimide Matrix Using Modified Electrospun Barium Titanate Nanofibers

Article Preview

Abstract:

Recently, many researchers focus on the nanoscale fillers to enhance electrical properties of composite due to the uniqueness of material. In this study, polyimide/barium titanate (BaTiO3) nanofibers films were prepared by incorporating electrospun BaTiO3 nanofibers with polyimide derived from 2,2-Bis [4-(4-aminophenoxy) phenyl] propane (BAPP) and 3,3',4,4'-Biphenyl tetracarboxylic dianhydride (BPDA). The obtained nanofibers were modified with (3-Glycidyloxypropyl) trimethoxysilane as coupling agent before integrating into the polyimide matrix. Microstructure and dielectric properties of BaTiO3 nanocomposites were investigated. The results showed BaTiO3 nanofibers were successfully produced at nanoscale regime and well dispersed in the hybrid film after modification and ultrasonication method. Dielectric constant of the nanofibers films were improved and increased with increasing of BaTiO3 nanofibers concentration while dielectric loss remains relative low.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 264)

Pages:

62-65

Citation:

Online since:

September 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Sroog, Polyimides, Progress in Polymer Science, vol. 16, pp.561-694, (1991).

DOI: 10.1016/0079-6700(91)90010-i

Google Scholar

[2] R. Watanabe, H. Miyake, T. Okumura, and M. Takahashi, Effect of temperature and electron energy on volume resistivity of a polyimide film in a space environment, in Electrical Insulation and Dielectric Phenomena (CEIDP), 2012 Annual Report Conference on, 2012, pp.673-676.

DOI: 10.1109/ceidp.2012.6378870

Google Scholar

[3] K. C. Cheung, P. Renaud, H. Tanila, and K. Djupsund, Flexible polyimide microelectrode array for in vivo recordings and current source density analysis, Biosensors and Bioelectronics, vol. 22, pp.1783-1790, (2007).

DOI: 10.1016/j.bios.2006.08.035

Google Scholar

[4] J. L. Hedrick, K. R. Carter, H. J. Cha, C. J. Hawker, R. A. DiPietro, J. W. Labadie, et al., High-temperature polyimide nanofoams for microelectronic applications, Reactive and Functional Polymers, vol. 30, pp.43-53, 1996/06/01 (1996).

DOI: 10.1016/1381-5148(96)00020-x

Google Scholar

[5] M. Wang, W. L. Li, Y. Feng, Y. F. Hou, T. D. Zhang, W. D. Fei, et al., Effect of BaTiO3 nanowires on dielectric properties and energy storage density of polyimide composite films, Ceramics International, (2015).

DOI: 10.1016/j.ceramint.2015.07.153

Google Scholar

[6] N. G. Devaraju, E. S. Kim, and B. I. Lee, The synthesis and dielectric study of BaTiO3/polyimide nanocomposite films, Microelectronic Engineering, vol. 82, pp.71-83, (2005).

DOI: 10.1016/j.mee.2005.06.003

Google Scholar

[7] J. Liu, G. Tian, S. Qi, Z. Wu, and D. Wu, Enhanced dielectric permittivity of a flexible three-phase polyimide–graphene–BaTiO3 composite material, Materials Letters, vol. 124, pp.117-119, 6/1/ (2014).

DOI: 10.1016/j.matlet.2014.02.105

Google Scholar

[8] M. Wang, W. L. Li, Y. Feng, Y. F. Hou, T. D. Zhang, W. D. Fei, et al., Effect of BaTiO3 nanowires on dielectric properties and energy storage density of polyimide composite films, Ceramics International, vol. 41, pp.13582-13588, (2015).

DOI: 10.1016/j.ceramint.2015.07.153

Google Scholar

[9] C. -Y. Lin, D. -H. Kuo, F. -R. Sie, J. -Y. Cheng, and G. -S. Liou, Preparation and characterization of organosoluble polyimide/BaTiO3 composite films with mechanical-and chemical-treated ceramic fillers, Polymer journal, vol. 44, pp.1131-1137, (2012).

DOI: 10.1038/pj.2012.79

Google Scholar

[10] Z. Ji, L. Longtu, G. Zhilun, Z. Xiaowen, and D. Barber, Sol-gel derived BaTiO 3 thin films with embedded silver nanoparticles: preparation and dielectric properties, Nanostructured materials, vol. 8, pp.321-328, (1997).

DOI: 10.1016/s0965-9773(97)00171-2

Google Scholar