[1]
H. Agougui, A. Aissa, M. Debbabi, Synthesis and characterization of calcium hydroxy and fluoroapatite functionalized with methyl phosphonic dichloride, Applied Surface Science, 261 (2012) 182-188.
DOI: 10.1016/j.apsusc.2012.07.136
Google Scholar
[2]
K. Lin, P. Liu, L. Wei, Z. Zou, W. Zhang, Y. Qian, Y. Shen, J. Chang, Strontium substituted hydroxyapatite porous microspheres: Surfactant-free hydrothermal synthesis, enhanced biological response and sustained drug release, Chemical Engineering Journal, 222 (2013).
DOI: 10.1016/j.cej.2013.02.037
Google Scholar
[3]
G.S. Kumar, A. Thamizhavel, Y. Yokogawa, S.N. Kalkura, E.K. Girija, Synthesis, characterization and in vitro studies of zinc and carbonate co-substituted nano-hydroxyapatite for biomedical applications, Materials Chemistry and Physics, 134 (2012).
DOI: 10.1016/j.matchemphys.2012.04.005
Google Scholar
[4]
A.Z. Alshemary, M. Akram, Y. -F. Goh, U. Tariq, F.K. Butt, A. Abdolahi, R. Hussain, Synthesis, characterization, in vitro bioactivity and antimicrobial activity of magnesium and nickel doped silicate hydroxyapatite, Ceramics International, 41 (2015).
DOI: 10.1016/j.ceramint.2015.06.003
Google Scholar
[5]
R.V. Suganthi, K. Elayaraja, M.I.A. Joshy, V.S. Chandra, E.K. Girija, S.N. Kalkura, Fibrous growth of strontium substituted hydroxyapatite and its drug release, Materials Science and Engineering: C, 31 (2011) 593-599.
DOI: 10.1016/j.msec.2010.11.025
Google Scholar
[6]
A. Rogina, M. Ivankovic, H. Ivankovic, Preparation and characterization of nano-hydroxyapatite within chitosan matrix, Mater Sci Eng C Mater Biol Appl, 33 (2013) 4539-4544.
DOI: 10.1016/j.msec.2013.07.008
Google Scholar
[7]
M. Dash, F. Chiellini, R.M. Ottenbrite, E. Chiellini, Chitosan-A versatile semi-synthetic polymer in biomedical applications, Progress in Polymer Science, 36 (2011) 981-1014.
DOI: 10.1016/j.progpolymsci.2011.02.001
Google Scholar
[8]
H.H. Jin, D.H. Kim, T.W. Kim, K.K. Shin, J.S. Jung, H.C. Park, S.Y. Yoon, In vivo evaluation of porous hydroxyapatite/chitosan-alginate composite scaffolds for bone tissue engineering, Int J Biol Macromol, 51 (2012) 1079-1085.
DOI: 10.1016/j.ijbiomac.2012.08.027
Google Scholar
[9]
M. Rajkumar, K. Kavitha, M. Prabhu, N. Meenakshisundaram, V. Rajendran, Nanohydroxyapatite-chitosan-gelatin polyelectrolyte complex with enhanced mechanical and bioactivity, Mater Sci Eng C Mater Biol Appl, 33 (2013) 3237-3244.
DOI: 10.1016/j.msec.2013.04.005
Google Scholar
[10]
E.S. Thian, T. Konishi, Y. Kawanobe, P.N. Lim, C. Choong, B. Ho, M. Aizawa, Zinc-substituted hydroxyapatite: a biomaterial with enhanced bioactivity and antibacterial properties, J Mater Sci Mater Med, 24 (2013) 437-445.
DOI: 10.1007/s10856-012-4817-x
Google Scholar
[11]
P. Roy, R.R. Sailaja, Chitosan-nanohydroxyapatite composites: mechanical, thermal and bio-compatibility studies, Int J Biol Macromol, 73 (2015) 170-181.
DOI: 10.1016/j.ijbiomac.2014.11.023
Google Scholar
[12]
A. Balamurugan, G. Balossier, P. Torres, J. Michel, J.M.F. Ferreira, Sol–gel synthesis and spectrometric structural evaluation of strontium substituted hydroxyapatite, Materials Science and Engineering: C, 29 (2009) 1006-1009.
DOI: 10.1016/j.msec.2008.09.005
Google Scholar
[13]
Suganthi, R. V.; Elayaraja, K.; Joshy, M. I. A.; Chandra, V. S.; Girija, E. K.; Kalkura, S. N. Fibrous growth of strontium substituted hydroxyapatite and its drug release. Materials Science and Engineering: C, 31 (2011) 593-599.
DOI: 10.1016/j.msec.2010.11.025
Google Scholar