Synthesis and Characterisation of Novel Chitosan-Hydroxyapatites Composites Doped with Zinc

Article Preview

Abstract:

The synthesis of a novel zinc doped chitosan-hydroxyapatite (chitosan-HAp) composite was done via in situ co-precipitation method. FTIR results showed that zinc is incorporated into the composite formed and is less crystalline compared to the pure hydroxyapatite (HAp). XRD results obtained showed that the incorporation of zinc into the lattice of the chitosan-HAp led to changes in the crystallinity, crystallite size and lattice constant of the composite material. FESEM images of the samples revealed that the novel material has a morphological features that resemble that of bone mineral.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 264)

Pages:

74-78

Citation:

Online since:

September 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Agougui, A. Aissa, M. Debbabi, Synthesis and characterization of calcium hydroxy and fluoroapatite functionalized with methyl phosphonic dichloride, Applied Surface Science, 261 (2012) 182-188.

DOI: 10.1016/j.apsusc.2012.07.136

Google Scholar

[2] K. Lin, P. Liu, L. Wei, Z. Zou, W. Zhang, Y. Qian, Y. Shen, J. Chang, Strontium substituted hydroxyapatite porous microspheres: Surfactant-free hydrothermal synthesis, enhanced biological response and sustained drug release, Chemical Engineering Journal, 222 (2013).

DOI: 10.1016/j.cej.2013.02.037

Google Scholar

[3] G.S. Kumar, A. Thamizhavel, Y. Yokogawa, S.N. Kalkura, E.K. Girija, Synthesis, characterization and in vitro studies of zinc and carbonate co-substituted nano-hydroxyapatite for biomedical applications, Materials Chemistry and Physics, 134 (2012).

DOI: 10.1016/j.matchemphys.2012.04.005

Google Scholar

[4] A.Z. Alshemary, M. Akram, Y. -F. Goh, U. Tariq, F.K. Butt, A. Abdolahi, R. Hussain, Synthesis, characterization, in vitro bioactivity and antimicrobial activity of magnesium and nickel doped silicate hydroxyapatite, Ceramics International, 41 (2015).

DOI: 10.1016/j.ceramint.2015.06.003

Google Scholar

[5] R.V. Suganthi, K. Elayaraja, M.I.A. Joshy, V.S. Chandra, E.K. Girija, S.N. Kalkura, Fibrous growth of strontium substituted hydroxyapatite and its drug release, Materials Science and Engineering: C, 31 (2011) 593-599.

DOI: 10.1016/j.msec.2010.11.025

Google Scholar

[6] A. Rogina, M. Ivankovic, H. Ivankovic, Preparation and characterization of nano-hydroxyapatite within chitosan matrix, Mater Sci Eng C Mater Biol Appl, 33 (2013) 4539-4544.

DOI: 10.1016/j.msec.2013.07.008

Google Scholar

[7] M. Dash, F. Chiellini, R.M. Ottenbrite, E. Chiellini, Chitosan-A versatile semi-synthetic polymer in biomedical applications, Progress in Polymer Science, 36 (2011) 981-1014.

DOI: 10.1016/j.progpolymsci.2011.02.001

Google Scholar

[8] H.H. Jin, D.H. Kim, T.W. Kim, K.K. Shin, J.S. Jung, H.C. Park, S.Y. Yoon, In vivo evaluation of porous hydroxyapatite/chitosan-alginate composite scaffolds for bone tissue engineering, Int J Biol Macromol, 51 (2012) 1079-1085.

DOI: 10.1016/j.ijbiomac.2012.08.027

Google Scholar

[9] M. Rajkumar, K. Kavitha, M. Prabhu, N. Meenakshisundaram, V. Rajendran, Nanohydroxyapatite-chitosan-gelatin polyelectrolyte complex with enhanced mechanical and bioactivity, Mater Sci Eng C Mater Biol Appl, 33 (2013) 3237-3244.

DOI: 10.1016/j.msec.2013.04.005

Google Scholar

[10] E.S. Thian, T. Konishi, Y. Kawanobe, P.N. Lim, C. Choong, B. Ho, M. Aizawa, Zinc-substituted hydroxyapatite: a biomaterial with enhanced bioactivity and antibacterial properties, J Mater Sci Mater Med, 24 (2013) 437-445.

DOI: 10.1007/s10856-012-4817-x

Google Scholar

[11] P. Roy, R.R. Sailaja, Chitosan-nanohydroxyapatite composites: mechanical, thermal and bio-compatibility studies, Int J Biol Macromol, 73 (2015) 170-181.

DOI: 10.1016/j.ijbiomac.2014.11.023

Google Scholar

[12] A. Balamurugan, G. Balossier, P. Torres, J. Michel, J.M.F. Ferreira, Sol–gel synthesis and spectrometric structural evaluation of strontium substituted hydroxyapatite, Materials Science and Engineering: C, 29 (2009) 1006-1009.

DOI: 10.1016/j.msec.2008.09.005

Google Scholar

[13] Suganthi, R. V.; Elayaraja, K.; Joshy, M. I. A.; Chandra, V. S.; Girija, E. K.; Kalkura, S. N. Fibrous growth of strontium substituted hydroxyapatite and its drug release. Materials Science and Engineering: C, 31 (2011) 593-599.

DOI: 10.1016/j.msec.2010.11.025

Google Scholar