Hydrothermal Growth of 1D ZnO Nanorods Thin Films for Hydrogen Gas Production through Water Splitting Reaction

Article Preview

Abstract:

Current study aims to control the growth of vertically aligned zinc oxide (ZnO) nanorods (NRs) arrays on indium tin oxide (ITO) substrate with tuneable diameter and length by using hydrothermal method. FESEM result shows that the diameter of NRs are tuneable from 95 nm to 107 nm and its length can be varied from 2.0 μm to 5.0 μm by prolonging the synthesis duration. According to FESEM images, extent the synthesis duration renders denser NRs occupancy. XRD result reveals that the NRs have prefer orientation along 002 direction, which is distinguishly different from relative peak intensity of standard ZnO. The NRs are employed as photocatalyst thin film to produce hydrogen gas (H2) via photocatalytic water splitting reaction.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 264)

Pages:

95-98

Citation:

Online since:

September 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Xu, L. Wang, X. Cao, Polymer supported graphene–CdS composite catalyst with enhanced photocatalytic hydrogen production from water splitting under visible light, Chemical Engineering Journal, 283 (2016) 816-825.

DOI: 10.1016/j.cej.2015.08.018

Google Scholar

[2] M.G. Walter, E.L. Warren, J.R. McKone, S.W. Boettcher, Q. Mi, E.A. Santori, N.S. Lewis, Solar water splitting cells, Chemical reviews, 110 (2010) 6446-6473.

DOI: 10.1021/cr1002326

Google Scholar

[3] Z. Bai, Y. Zhang, CdS nanoparticles sensitized large-scale patterned ZnO nanowire arrays for enhanced solar water splitting, Journal of Solid State Electrochemistry, (2016) 1-7.

DOI: 10.1007/s10008-016-3325-1

Google Scholar

[4] C. Zhang, M. Shao, F. Ning, S. Xu, Z. Li, M. Wei, D.G. Evans, X. Duan, Au nanoparticles sensitized ZnO nanorod@ nanoplatelet core–shell arrays for enhanced photoelectrochemical water splitting, Nano Energy, 12 (2015) 231-239.

DOI: 10.1016/j.nanoen.2014.12.037

Google Scholar

[5] X. Yang, A. Wolcott, G. Wang, A. Sobo, R.C. Fitzmorris, F. Qian, J.Z. Zhang, Y. Li, Nitrogen-doped ZnO nanowire arrays for photoelectrochemical water splitting, Nano Letters, 9 (2009) 2331-2336.

DOI: 10.1021/nl900772q

Google Scholar

[6] A. Wolcott, W.A. Smith, T.R. Kuykendall, Y. Zhao, J.Z. Zhang, Photoelectrochemical water splitting using dense and aligned TiO2 nanorod arrays, Small, 5 (2009) 104-111.

DOI: 10.1002/smll.200800902

Google Scholar

[7] L.E. Greene, M. Law, D.H. Tan, M. Montano, J. Goldberger, G. Somorjai, P. Yang, General route to vertical ZnO nanowire arrays using textured ZnO seeds, Nano Letters, 5 (2005) 1231-1236.

DOI: 10.1021/nl050788p

Google Scholar

[8] G. Amin, M. Asif, A. Zainelabdin, S. Zaman, O. Nur, M. Willander, Influence of pH, precursor concentration, growth time, and temperature on the morphology of ZnO nanostructures grown by the hydrothermal method, Journal of Nanomaterials, 2011 (2011).

DOI: 10.1155/2011/269692

Google Scholar

[9] J. Cheng, K.M. Poduska, Ambient Degradation of ZnO Powders: Does Surface Polarity Matter?, ECS Journal of Solid State Science and Technology, 3 (2014) P133-P137.

DOI: 10.1149/2.011405jss

Google Scholar

[10] M. Guo, P. Diao, S. Cai, Hydrothermal growth of well-aligned ZnO nanorod arrays: Dependence of morphology and alignment ordering upon preparing conditions, Journal of Solid State Chemistry, 178 (2005) 1864-1873.

DOI: 10.1016/j.jssc.2005.03.031

Google Scholar

[11] G. Hodes, P.V. Kamat, Understanding the Implication of Carrier Diffusion Length in Photovoltaic Cells, The Journal of Physical Chemistry Letters, 6 (2015) 4090-4092.

DOI: 10.1021/acs.jpclett.5b02052

Google Scholar