Crude Tall Oil as Raw Material for Rigid Polyurethane Foams with Low Water Absorption

Article Preview

Abstract:

The synthesis technology of polyol from crude deciduous tree tall oil was developed, the structure of obtained polyol was analyzed using FTIR spectroscopy. Compositions of rigid polyurethane (PUR) foams were formulated using polyol from crude deciduous tree tall oil, Isocyanate indexes varied in wide range from 150 to 300. The densities of obtained rigid polyurethane foams was in range from 44-101 kg/m3. Produced rigid PUR foams were characterized by good compression characteristics and low water absorption. The optimal water absorption was achieved at density lower than 50 kg/m3 and Isocyanate index lower than 175. Thus the obtained PUR foams have the potential to be used for boat construction or for production of life-saving equipment.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 267)

Pages:

17-22

Citation:

Online since:

October 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. Weidner, Analysis of the European crude tall oil industry – Environmental Impact, Socioeconomic Value & Downstream Potential (Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT Report: EU CTO – Added value study, 2016).

Google Scholar

[2] J.M. Anthonykutty, K.M. van Geem, R. de Bruycker, J. Linnekoski, A. Laitinen, J. Räsänen, Value added hydrocarbons from distilled tall oil via hydrotreating over a commercial NiMo catalyst, Ind. Eng. Chem. Res. 52 (2013) 10114-10125.

DOI: 10.1021/ie400790v

Google Scholar

[3] J. Mikulec, A. Kleinová, J. Cvengroš, L. Joríková, M. Banič, Catalytic transformation of tall oil into biocomponent of diesel fuel, Int. J. of Chem. Eng. 2012 (2012) 1-9.

DOI: 10.1155/2012/215258

Google Scholar

[4] M. Le Gall, D. Choqueuse, P.Y. Le Gac, P. Davies, D. Perreux, Novel mechanical characterization method for deep sea buoyancy material under hydrostatic pressure, Polymer Testing 39 (2014) 36-44.

DOI: 10.1016/j.polymertesting.2014.07.009

Google Scholar

[5] X. Zhang, W. Fu, C. Duan, H. Xiao, M. Shi, N. Zhao, J. Xu, Super hydrophobicity determines the buoyancy performance of kapok fiber aggregates, Appl. Surf. Sci. 266 (2013) 225-229.

DOI: 10.1016/j.apsusc.2012.11.153

Google Scholar

[6] S. Jumat, N. Saliha, E. Yousif, Industrial development and applications of plant oils and their biobased oleochemicals. Arabian J. Chem. 5 (2012) 135-145.

DOI: 10.1016/j.arabjc.2010.08.007

Google Scholar

[7] L. Montero de Espinosa, M.A.R. Meie, Plant oils: the perfect renewable resource for polymer science, Eur. Polym. J. 47 (2011) 837-852.

DOI: 10.1016/j.eurpolymj.2010.11.020

Google Scholar

[8] S. Caillol, M. Desroches, G. Boutevin, C. Loubat, R. Auvergne, B. Boutevin, Synthesis of new polyester polyols from epoxidized vegetable oils and biobased acids, Eur. J. Lipid. Sci. Technol. 114 (2012) 1447-1459.

DOI: 10.1002/ejlt.201200199

Google Scholar

[9] R. Vasconcelos Vieira Lopes, N.P.D. Loureiro, A.P.T. Pezzin, A.C.M. Gomes, I.S. Resck, M.J.A. Sales, Synthesis of polyols and polyurethanes from vegetable oils-kinetic and characterization, J. Polym. Res. 20 (2013) 238-247.

DOI: 10.1007/s10965-013-0238-x

Google Scholar

[10] U. Stirna, U. Cabulis, I. Beverte, Water blown polyisocyanurate foams from vegetable oil polyols, J. Cell. Plast. 44 (2008) 139-160.

DOI: 10.1177/0021955x07084705

Google Scholar

[11] A. Fridrihsone, U. Stirna, B. Lazdina, M. Misane, D. Vilsone, Characterization of polyurethane networks structure and properties based on rapeseed oil derived polyol, Eur. Polym. J. 49 (2013) 1204-1214.

DOI: 10.1016/j.eurpolymj.2013.03.012

Google Scholar

[12] M. Kuranska, A. Prociak, M. Kirpluks, U. Cabulis, Porous polyurethane composites based on bio-components, Compos. Sci. Technol. 75 (2013) 70-76.

Google Scholar

[13] A. Prociak, M. Kuranska, E. Malevska, Porous polyurethane plastics synthetized using bio-polyols from renewable raw materials, Polimery. 62 (2017) 353-363.

DOI: 10.14314/polimery.2017.353

Google Scholar

[14] R.L. Sandridge, Polyurethane foam from hydroxyled tall oil, Patent 3211674, USA, (1965).

Google Scholar

[15] H. Piechota, H. Wirtz, Polyurethane foam prepared from the tall oil ester, Patent 3248348, USA, (1966).

Google Scholar

[16] A. Ivdre, G. Soto, U. Cabulis, Polyols based on poly(ethylene terephthalate) and tall oil: perspectives for synthesis and production of rigid polyurethane foams, J. Ren. Mat. 4 (2016) 285-293.

DOI: 10.7569/jrm.2016.634122

Google Scholar

[17] U. Cabulis, M. Kirpluks, U. Stirna, M.J. Lopez, M.C. Vargas-Garcia, F. Suarez-Estrella, J. Moreno, Rigid polyurethane foams obtained from tall oil and filled with natural fibers: application as a support for immobilization of lignin-degrading microorganisms, J. Cell. Plast. 48 (2012).

DOI: 10.1177/0021955x12443142

Google Scholar

[18] Thermal insulation materials made of rigid polyurethane foam (PUR/PIR) (Federation of European Rigid Polyurethane Foams Associations, Report No. 1, Oct, 2006).

DOI: 10.3403/30315082

Google Scholar