Crude Tall Oil as Raw Material for Rigid Polyurethane Foams with Low Water Absorption

Abstract:

Article Preview

The synthesis technology of polyol from crude deciduous tree tall oil was developed, the structure of obtained polyol was analyzed using FTIR spectroscopy. Compositions of rigid polyurethane (PUR) foams were formulated using polyol from crude deciduous tree tall oil, Isocyanate indexes varied in wide range from 150 to 300. The densities of obtained rigid polyurethane foams was in range from 44-101 kg/m3. Produced rigid PUR foams were characterized by good compression characteristics and low water absorption. The optimal water absorption was achieved at density lower than 50 kg/m3 and Isocyanate index lower than 175. Thus the obtained PUR foams have the potential to be used for boat construction or for production of life-saving equipment.

Info:

Periodical:

Solid State Phenomena (Volume 267)

Edited by:

Regita Bendikienė and Kazimieras Juzėnas

Pages:

17-22

Citation:

V. Zeltins et al., "Crude Tall Oil as Raw Material for Rigid Polyurethane Foams with Low Water Absorption", Solid State Phenomena, Vol. 267, pp. 17-22, 2017

Online since:

October 2017

Export:

Price:

$38.00

* - Corresponding Author

[1] E. Weidner, Analysis of the European crude tall oil industry – Environmental Impact, Socioeconomic Value & Downstream Potential (Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT Report: EU CTO – Added value study, 2016).

[2] J.M. Anthonykutty, K.M. van Geem, R. de Bruycker, J. Linnekoski, A. Laitinen, J. Räsänen, Value added hydrocarbons from distilled tall oil via hydrotreating over a commercial NiMo catalyst, Ind. Eng. Chem. Res. 52 (2013) 10114-10125.

DOI: https://doi.org/10.1021/ie400790v

[3] J. Mikulec, A. Kleinová, J. Cvengroš, L. Joríková, M. Banič, Catalytic transformation of tall oil into biocomponent of diesel fuel, Int. J. of Chem. Eng. 2012 (2012) 1-9.

DOI: https://doi.org/10.1155/2012/215258

[4] M. Le Gall, D. Choqueuse, P.Y. Le Gac, P. Davies, D. Perreux, Novel mechanical characterization method for deep sea buoyancy material under hydrostatic pressure, Polymer Testing 39 (2014) 36-44.

DOI: https://doi.org/10.1016/j.polymertesting.2014.07.009

[5] X. Zhang, W. Fu, C. Duan, H. Xiao, M. Shi, N. Zhao, J. Xu, Super hydrophobicity determines the buoyancy performance of kapok fiber aggregates, Appl. Surf. Sci. 266 (2013) 225-229.

DOI: https://doi.org/10.1016/j.apsusc.2012.11.153

[6] S. Jumat, N. Saliha, E. Yousif, Industrial development and applications of plant oils and their biobased oleochemicals. Arabian J. Chem. 5 (2012) 135-145.

[7] L. Montero de Espinosa, M.A.R. Meie, Plant oils: the perfect renewable resource for polymer science, Eur. Polym. J. 47 (2011) 837-852.

DOI: https://doi.org/10.1016/j.eurpolymj.2010.11.020

[8] S. Caillol, M. Desroches, G. Boutevin, C. Loubat, R. Auvergne, B. Boutevin, Synthesis of new polyester polyols from epoxidized vegetable oils and biobased acids, Eur. J. Lipid. Sci. Technol. 114 (2012) 1447-1459.

DOI: https://doi.org/10.1002/ejlt.201200199

[9] R. Vasconcelos Vieira Lopes, N.P.D. Loureiro, A.P.T. Pezzin, A.C.M. Gomes, I.S. Resck, M.J.A. Sales, Synthesis of polyols and polyurethanes from vegetable oils-kinetic and characterization, J. Polym. Res. 20 (2013) 238-247.

DOI: https://doi.org/10.1007/s10965-013-0238-x

[10] U. Stirna, U. Cabulis, I. Beverte, Water blown polyisocyanurate foams from vegetable oil polyols, J. Cell. Plast. 44 (2008) 139-160.

DOI: https://doi.org/10.1177/0021955x07084705

[11] A. Fridrihsone, U. Stirna, B. Lazdina, M. Misane, D. Vilsone, Characterization of polyurethane networks structure and properties based on rapeseed oil derived polyol, Eur. Polym. J. 49 (2013) 1204-1214.

DOI: https://doi.org/10.1016/j.eurpolymj.2013.03.012

[12] M. Kuranska, A. Prociak, M. Kirpluks, U. Cabulis, Porous polyurethane composites based on bio-components, Compos. Sci. Technol. 75 (2013) 70-76.

DOI: https://doi.org/10.1016/j.compscitech.2012.11.014

[13] A. Prociak, M. Kuranska, E. Malevska, Porous polyurethane plastics synthetized using bio-polyols from renewable raw materials, Polimery. 62 (2017) 353-363.

DOI: https://doi.org/10.14314/polimery.2017.353

[14] R.L. Sandridge, Polyurethane foam from hydroxyled tall oil, Patent 3211674, USA, (1965).

[15] H. Piechota, H. Wirtz, Polyurethane foam prepared from the tall oil ester, Patent 3248348, USA, (1966).

[16] A. Ivdre, G. Soto, U. Cabulis, Polyols based on poly(ethylene terephthalate) and tall oil: perspectives for synthesis and production of rigid polyurethane foams, J. Ren. Mat. 4 (2016) 285-293.

DOI: https://doi.org/10.7569/jrm.2016.634122

[17] U. Cabulis, M. Kirpluks, U. Stirna, M.J. Lopez, M.C. Vargas-Garcia, F. Suarez-Estrella, J. Moreno, Rigid polyurethane foams obtained from tall oil and filled with natural fibers: application as a support for immobilization of lignin-degrading microorganisms, J. Cell. Plast. 48 (2012).

DOI: https://doi.org/10.1177/0021955x12443142

[18] Thermal insulation materials made of rigid polyurethane foam (PUR/PIR) (Federation of European Rigid Polyurethane Foams Associations, Report No. 1, Oct, 2006).

DOI: https://doi.org/10.3403/30065039u