Absorption and Raman Spectra of Dy3+ Doped Tellurite Glass: Combined Effects of Silver and Titanium Nanoparticles

Article Preview

Abstract:

Obtaining enhanced up-conversion efficiency in rare earth ions doped inorganic glass by means of noble metal nanoparticles (NPs) embedment remains challenging. For the first time, we report the combined effects of silver (Ag) and titania (TiO2) NPs embedment on the structural and absorption characteristics of dysprosium (Dy3+) doped tellurite glass. Transparent and thermally stable glass samples were prepared using conventional melt quenching method and characterized via spectroscopic techniques. The production of the strong electric field in the proximity of Dy3+ ion due to the localized surface plasmon (LSP) of embedded metallic NPs was found to improve the glass absorption properties. The effects of bimetallic NPs in changing the structure and absorption properties were found to be better than singly included metallic NP (either Ag or TiO2). This improvement in the absorption behavior was attributed to the combined LSP resonance (LSPR) effects of Ag and TiO2 NPs which transferred strong local electric field into the Dy3+ ions positioned in their vicinity. The UV-Vis-NIR spectra revealed six absorption bands centerted at 1690, 1283, 1097, 904, 800 and 755 nm which were allocated to the transition from 6H15/2 ground state to various excited states (6H11/2, 6F11/2, 6F9/2, 6F7/2, 6F5/2 and 6F3/2) of Dy3+ ion. Furthermore, the Raman spectra of such bimetallic NPs included glass system exhibited Raman peak shift accompanied by intensity variations when compared to the glass system with only one type of NPs incorporation. This enhancement in the Raman signal was ascribed to the LSPR mediated mechansim. The synthesized glass comporition was asserted to be prospective for devices.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 268)

Pages:

111-116

Citation:

Online since:

October 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Blanchandin, P. Thomas, J.C. Champarnaud-Mesjard, B. F, New heavy metal oxide glasses: investigations within the TeO –Nb O –Bi O system. Journal of Alloys and Compounds. 347 (2002) 206–212.

DOI: 10.1016/s0925-8388(02)00766-1

Google Scholar

[2] I. Shaltout, Y. B, Manifestation of Nd ions on the structure , Raman and IR spectra of ( TeO 2 -MoO-Nd 2 O 3 ) glasses, Journal of Materials Science, 40 (2005) 3367–3373.

DOI: 10.1007/s10853-005-2845-3

Google Scholar

[3] Awang, A., Ghoshal, S. K., Sahar, M. R., Dousti, M. R., & Nawaz, F, Growth of Au Nanoparticles Stimulate Spectroscopic Properties of Er3+ Doped TeO2-ZnO-Na2O Glasses, Advanced Materials Research. 895 (2014) 254–259.

DOI: 10.4028/www.scientific.net/amr.895.254

Google Scholar

[4] Sazali, E. S., Sahar, M. R., Ghoshal, S. K., Arifin, R., Rohani, M. S., & Awang, a, Optical properties of gold nanoparticle embedded Er3+ doped lead-tellurite glasses. Journal of Alloys and Compounds. 607 (2014) 85–90.

DOI: 10.1016/j.jallcom.2014.03.175

Google Scholar

[5] Rai, V. K., Rai, S. B., & Rai, D. K, Optical studies of Dy 3 + doped tellurite glass : Observation of yellow-green upconversion, Optics Communications. 257 (2006) 112–119.

DOI: 10.1016/j.optcom.2005.07.022

Google Scholar

[6] Som, T., & Karmakar, B, Core-shell Au-Ag nanoparticles in dielectric nanocomposites with plasmon-enhanced fluorescence: A new paradigm in antimony glasses, Nano Research. 2(8) (2009) 607–616.

DOI: 10.1007/s12274-009-9061-4

Google Scholar

[7] Aswathy, B., Sony, G., & Gopchandran, K. G, Shell Thickness-Dependent Plasmon Coupling and Creation of SERS Hot Spots in Au @ Ag Core-Shell Nanostructures, Plasmonics (9) (2014) 1323–1331.

DOI: 10.1007/s11468-014-9745-9

Google Scholar

[8] Cao, H., Qiao, Y., Liu, X., Lu, T., Cui, T., Meng, F., & Chu, P. K, Electron storage mediated dark antibacterial action of bound silver nanoparticles: Smaller is not always better, Acta Biomaterialia. 9(2) (2013) 5100–5110.

DOI: 10.1016/j.actbio.2012.10.017

Google Scholar

[9] Awazu, K., Fujimaki, M., Rockstuhl, C., & Tominaga, J, A Plasmonic Photocatalyst Consisting of Silver Nanoparticles Embedded in Titanium Dioxide, Journal American Chemical Society. 130(4) (2008) 1676–1680.

DOI: 10.1021/ja076503n

Google Scholar

[10] Azusa Takai and Prashant V. Kamat, Capture, Store, and Discharge. Shuttling Photogenerated Electrons across TiO 2 À Silver Interface. ACS Nano, 5(9) (2011) 7369–7376.

DOI: 10.1021/nn202294b

Google Scholar

[11] Hubenthal, F., Ziegler, T., Hendrich, C., Alschinger, M., & Tr, F, Tuning the surface plasmon resonance by preparation of gold-core / silver-shell and alloy nanoparticles, The European Physical Journal D. 34 (2005) 165–168.

DOI: 10.1140/epjd/e2005-00138-1

Google Scholar

[12] Cao, H., Liu, X., Meng, F., & Chu, P. K, Biological actions of silver nanoparticles embedded in titanium controlled by micro-galvanic effects. Biomaterials, 32(3) (2011) 693–705.

DOI: 10.1016/j.biomaterials.2010.09.066

Google Scholar

[13] Yuan, Z. Y., & Su, B. L, Titanium oxide nanotubes, nanofibers and nanowires, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 241(1–3) (2004) 173–183.

DOI: 10.1016/j.colsurfa.2004.04.030

Google Scholar

[14] Karunakaran, R. T., Marimuthu, K., Babu, S. S., & Arumugam, S, Structural , optical and thermal investigations on Dy 3 + doped NaF – Li 2 O – B 2 O 3 glasses, Physica B: Physics of Condensed Matter, 404(21), (2009) 3995–4000.

DOI: 10.1016/j.physb.2009.07.160

Google Scholar

[15] Sreedhar, V. B., Ramachari, D., & Jayasankar, C. K, Optical properties of zincfluorophosphate glasses doped with Dy 3 þ ions, Physica B: Physics of Condensed Matter, 408 (2013) 158–163.

DOI: 10.1016/j.physb.2012.09.047

Google Scholar

[16] Azeem, P. A., Balaji, S., & Reddy, R. R, Spectroscopic properties of Dy 3 + ions in NaF – B 2 O 3 – Al 2 O 3 glasses, Spectrocimica Acta Part A 69 (2008) 183–188.

DOI: 10.1016/j.saa.2007.03.028

Google Scholar

[17] Takahiro, K., Naya, S. I., & Tada, H, Highly active supported plasmonic photocatalyst consisting of gold nanoparticle-loaded mesoporous titanium (IV) oxide overlayer and conducting substrate, Journal of Physical Chemistry C. 118(46) (2014).

DOI: 10.1021/jp5094542

Google Scholar

[18] Tsutomu Hirakawa and Prashant V. Kamat, Photonduced Electron Storage and Surface Plasmon Modulation in Ag@TiO2 Clusters, Journal of Surfaces and Colloids, 20(14) (2004) 15–17.

Google Scholar

[19] Jaba, N., Mermet, A., Duval, E., & Champagnon, B, Raman spectroscopy studies of Er3+-doped zinc tellurite glasses, Journal of Non-Crystalline Solids. 351(10–11) (2005) 833–837.

DOI: 10.1016/j.jnoncrysol.2005.02.003

Google Scholar

[20] Damas, P., Coelho, J., Hungerford, G., & Hussain, N. S, Structural studies of lithium boro tellurite glasses doped with praseodymium and samarium oxides, Materials Research Bulletin, 47(11), 3489–3494.

DOI: 10.1016/j.materresbull.2012.06.071

Google Scholar

[21] Takao sekiya, Norio Mochida, A. O. and M. T, Raman spectra of MO1/2 –TeO2 ( M = Li , Na , K , Rb , Cs and T1 ), Journal of Non-Crystalline Solids, 144, 128–144.

DOI: 10.1016/s0022-3093(05)80393-x

Google Scholar

[22] Damak, K., Sayed, E., Rüssel, C., & Maâlej, R, White light generation from Dy 3 þ doped tellurite glass, Journal of Quantitative Spectroscopy and Radiative Transfer, 134, 55–63.

DOI: 10.1016/j.jqsrt.2013.10.013

Google Scholar

[23] Mattarelli, M. et. al, Optical spectroscopy of TeO2–GeO2 glasses activated with Er3+ and Tm3+ ions, Journal of Non-Crystalline Solids, 351(21–23), 1759–1763.

DOI: 10.1016/j.jnoncrysol.2005.04.010

Google Scholar

[24] Ravi, O., Madhukar Reddy, C., Manoj, L., & Deva Prasad Raju, B, Structural and optical studies of Sm3+ ions doped niobium borotellurite glasses, Journal of Molecular Structure, 1029, 53–59.

DOI: 10.1016/j.molstruc.2012.06.059

Google Scholar