[1]
S. Y. Chiu, H. W. Huang, K. C. Liang, Comprehensive investigation on planar type of Pd-GaN hydrogen sensors, Int. J. Hydrogen Energy 34(13) (2009) 5604-5615.
DOI: 10.1016/j.ijhydene.2009.04.073
Google Scholar
[2]
W. J. Butter, M. B. Post, R. Burgess, C. Rivkin, An overview of hydrogen safety sensors and requirements, Int. J. Hydrogen Energy 36(3) (2011) 2462-2470.
DOI: 10.1016/j.ijhydene.2010.04.176
Google Scholar
[3]
S. Nicoletti, L. Dori, F. Corticelli, M. Leoni, Tin oxide thin-film sensors for aromatic hydrocarbons detection: effect of aging time on film microstructure, Journal of the American Ceramic Society 82(5) (1999) 1201-1206.
DOI: 10.1111/j.1151-2916.1999.tb01896.x
Google Scholar
[4]
C. H. Han, S. D. Han, I. Singh, Micro-bead of nano-crystalline F-doped SnO2 as a sensitive hydrogen gas sensor, Sensors and Actuators B: Chemical 109(2) (2005) 264-269.
DOI: 10.1016/j.snb.2004.12.115
Google Scholar
[5]
I. H. Kadhim and H. A. Hassan, Effect of annealing temperature on the characteristics of nanocrystalline tin dioxide thin films, Journal of Applied Science and Agriculture, 10(5) (2015) 159-164.
Google Scholar
[6]
I. H. Kadhim and H. Abu Hassan., Effects of glycerin volume ratios and annealing temperature on the characteristics of nanocrystalline tin dioxide thin films, Journal of Materials Science: Materials in Electronics 26(6) (2015) 3417-3426.
DOI: 10.1007/s10854-015-2851-4
Google Scholar
[7]
I. H. Kadhim, H. Abu Hassan, Q. N. Abdullah, Hydrogen gas sensor based on nanocrystalline SnO2 thin film grown on bare Si substrates, Nano-Micro Letters, 8(1) (2016) 20-28.
DOI: 10.1007/s40820-015-0057-1
Google Scholar
[8]
I. H. Kadhim and H. Abu Hassan, Room temperature hydrogen gas sensor based on nanocrystalline SnO2 thin film using sol–gel spin coating technique, Journal of Materials Science: Materials in Electronics 27(5) (2016) 4356-4362.
DOI: 10.1007/s10854-016-4304-0
Google Scholar
[9]
M. Aziz, S. Abbas, W. Baharom, Size-controlled synthesis of SnO2 nanoparticles by sol-gel method, Matt. Lett. 91 (2013) 31-34.
DOI: 10.1016/j.matlet.2012.09.079
Google Scholar
[10]
Y. Li, W. Yin, R. Deng, R. Chen, J. Chen, Q. Yan, B. Yao, H. Sun, S. Wei, T. Wu, Realizing a SnO2-based ultraviolet light-emitting diode via breaking the dipole-forbidden rule, NPG Asia Materials 4 (2012) 1-6.
DOI: 10.1038/am.2012.56
Google Scholar
[11]
L. Fields, J. Zheng, Y. Cheng, P. Xiong, Room-temperature low-power hydrogen sensor based on a single tin dioxide nanobelt, Applied Physics Letters 88 (2006) 3102.
DOI: 10.1063/1.2217710
Google Scholar
[12]
Q. Abdullah, F. Yam, J. Hassan, C. Chin, Z. Hassan, M. Bououdina, High performance room temperature GaN-nanowires hydrogen gas sensor fabricated by chemical vapor deposition (CVD) technique, Int. J. Hydrogen Energy 38 (2013) 14085-14101.
DOI: 10.1016/j.ijhydene.2013.08.014
Google Scholar
[13]
G. Xie, M. Song, K. Furuya, D.V. Louzguine, A. Inoue, Compound nanostructures formed by metal nanoparticles dispersed on nanodendrites grown on insulator substrates, Applied Physics Letters 88 (2006) 263120-263123.
DOI: 10.1063/1.2217261
Google Scholar
[14]
J. Gong, Q. Chen, W. Fei, S. Seal, Micromachined nanocrystalline SnO2 chemical gas sensors for electronic nose, Sensors and Actuators B: Chemical 102 (2004) 117-125.
DOI: 10.1016/j.snb.2004.02.055
Google Scholar
[15]
E. El-Maghraby, A. Qurashi, T. Yamazaki, Synthesis of SnO2 nanowires their structural and H2 gas sensing properties, Ceramics International 39 (2013) 8475-8480.
DOI: 10.1016/j.ceramint.2013.01.112
Google Scholar
[16]
I.J. Kim, S. Do Han, C.H. Han, J. Gwak, D.U. Hong, D. Jakhar, K. Singh, J.S. Wang, Development of micro hydrogen gas sensor with SnO2–Ag2 O–PtOx composite using MEMS process, Sensors and Actuators B: Chemical 127 (2007) 441-446.
DOI: 10.1016/j.snb.2007.04.047
Google Scholar