Hydrogen Gas Sensing Characterizations Based on Nanocrystalline SnO2 Thin Films Grown on SiO2/Si and Al2O3 Substrates

Article Preview

Abstract:

High-quality nanocrystalline (NC) SnO2 thin films were grown on SiO2/Si and Al2O3 substrates using sol–gel spin coating method. The structural properties, surface morphologies and gas sensing properties of the NC SnO2 were investigated. XRD measurements showed a tetragonal rutile structure and the diffraction peaks for NC SnO2 thin films grown on Al2O3 substrates outperformed those of NC SnO2 films grown on SiO2/Si substrates. The surface morphology of the annealed SnO2 thin films at 500 °C appeared as polycrystalline with uniform nanoparticle distribution. Hydrogen (H2) gas sensing performance of the NC SnO2 was examined for H2 concentrations ranging from 150 ppm to 1000 ppm at different temperatures (room temperature, 75 and 125 °C) for over 50 min. The room temperature sensitivities for H2 gas sensors based on NC SnO2 thin films grown on Al2O3 and SiO2/Si substrates was 2570% and 600%, respectively upon exposure to 1000 ppm of H2 gas. While the sensitivity values at 125 °C increased to 9200% and 1950%, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 268)

Pages:

244-248

Citation:

Online since:

October 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Y. Chiu, H. W. Huang, K. C. Liang, Comprehensive investigation on planar type of Pd-GaN hydrogen sensors, Int. J. Hydrogen Energy 34(13) (2009) 5604-5615.

DOI: 10.1016/j.ijhydene.2009.04.073

Google Scholar

[2] W. J. Butter, M. B. Post, R. Burgess, C. Rivkin, An overview of hydrogen safety sensors and requirements, Int. J. Hydrogen Energy 36(3) (2011) 2462-2470.

DOI: 10.1016/j.ijhydene.2010.04.176

Google Scholar

[3] S. Nicoletti, L. Dori, F. Corticelli, M. Leoni, Tin oxide thin-film sensors for aromatic hydrocarbons detection: effect of aging time on film microstructure, Journal of the American Ceramic Society 82(5) (1999) 1201-1206.

DOI: 10.1111/j.1151-2916.1999.tb01896.x

Google Scholar

[4] C. H. Han, S. D. Han, I. Singh, Micro-bead of nano-crystalline F-doped SnO2 as a sensitive hydrogen gas sensor, Sensors and Actuators B: Chemical 109(2) (2005) 264-269.

DOI: 10.1016/j.snb.2004.12.115

Google Scholar

[5] I. H. Kadhim and H. A. Hassan, Effect of annealing temperature on the characteristics of nanocrystalline tin dioxide thin films, Journal of Applied Science and Agriculture, 10(5) (2015) 159-164.

Google Scholar

[6] I. H. Kadhim and H. Abu Hassan., Effects of glycerin volume ratios and annealing temperature on the characteristics of nanocrystalline tin dioxide thin films, Journal of Materials Science: Materials in Electronics 26(6) (2015) 3417-3426.

DOI: 10.1007/s10854-015-2851-4

Google Scholar

[7] I. H. Kadhim, H. Abu Hassan, Q. N. Abdullah, Hydrogen gas sensor based on nanocrystalline SnO2 thin film grown on bare Si substrates, Nano-Micro Letters, 8(1) (2016) 20-28.

DOI: 10.1007/s40820-015-0057-1

Google Scholar

[8] I. H. Kadhim and H. Abu Hassan, Room temperature hydrogen gas sensor based on nanocrystalline SnO2 thin film using sol–gel spin coating technique, Journal of Materials Science: Materials in Electronics 27(5) (2016) 4356-4362.

DOI: 10.1007/s10854-016-4304-0

Google Scholar

[9] M. Aziz, S. Abbas, W. Baharom, Size-controlled synthesis of SnO2 nanoparticles by sol-gel method, Matt. Lett. 91 (2013) 31-34.

DOI: 10.1016/j.matlet.2012.09.079

Google Scholar

[10] Y. Li, W. Yin, R. Deng, R. Chen, J. Chen, Q. Yan, B. Yao, H. Sun, S. Wei, T. Wu, Realizing a SnO2-based ultraviolet light-emitting diode via breaking the dipole-forbidden rule, NPG Asia Materials 4 (2012) 1-6.

DOI: 10.1038/am.2012.56

Google Scholar

[11] L. Fields, J. Zheng, Y. Cheng, P. Xiong, Room-temperature low-power hydrogen sensor based on a single tin dioxide nanobelt, Applied Physics Letters 88 (2006) 3102.

DOI: 10.1063/1.2217710

Google Scholar

[12] Q. Abdullah, F. Yam, J. Hassan, C. Chin, Z. Hassan, M. Bououdina, High performance room temperature GaN-nanowires hydrogen gas sensor fabricated by chemical vapor deposition (CVD) technique, Int. J. Hydrogen Energy 38 (2013) 14085-14101.

DOI: 10.1016/j.ijhydene.2013.08.014

Google Scholar

[13] G. Xie, M. Song, K. Furuya, D.V. Louzguine, A. Inoue, Compound nanostructures formed by metal nanoparticles dispersed on nanodendrites grown on insulator substrates, Applied Physics Letters 88 (2006) 263120-263123.

DOI: 10.1063/1.2217261

Google Scholar

[14] J. Gong, Q. Chen, W. Fei, S. Seal, Micromachined nanocrystalline SnO2 chemical gas sensors for electronic nose, Sensors and Actuators B: Chemical 102 (2004) 117-125.

DOI: 10.1016/j.snb.2004.02.055

Google Scholar

[15] E. El-Maghraby, A. Qurashi, T. Yamazaki, Synthesis of SnO2 nanowires their structural and H2 gas sensing properties, Ceramics International 39 (2013) 8475-8480.

DOI: 10.1016/j.ceramint.2013.01.112

Google Scholar

[16] I.J. Kim, S. Do Han, C.H. Han, J. Gwak, D.U. Hong, D. Jakhar, K. Singh, J.S. Wang, Development of micro hydrogen gas sensor with SnO2–Ag2 O–PtOx composite using MEMS process, Sensors and Actuators B: Chemical 127 (2007) 441-446.

DOI: 10.1016/j.snb.2007.04.047

Google Scholar