The Influence of Carbon Nanotubes Contents on Electrical and Flammability Properties of Poly(Lactic Acid)/Multiwalled Carbon Nanotubes Nanocomposites

Article Preview

Abstract:

The effects of carboxylic functionalized multi-walled carbon nanotubes (CNT) contents on electrical and flammability properties of poly(lactic) acid/CNT nanocomposites were investigated. The PLA/CNT nanocomposites were prepared by melt-blending method, where the CNT contents were varied from 1 to 9 phr. From flammability properties analysis, nanocomposites with 9 phr CNT showed the highest limiting oxygen index (LOI) of 26.5 vol% as compared to 19.5 vol% of neat PLA. All nanocomposites with higher than 5 phr CNT contents also passed the V0 class of UL-94 vertical burning test rating. The direct current electrical test revealed that the electrical conductivity increases by approximately seven orders of magnitude from 2.19 × 10-11 S/m of neat PLA to 2.00 × 10-4 S/m for PLA/CNT nanocomposites with 5 phr CNT contents. The electrical conductivity of PLA/CNT continues to increase beyond 5 phr contents, with 2.26 × 10-3 S/m and 4.29 × 10-3 S/m respectively for 7 and 9 phr contents. The good dispersion of CNT leads to formation of electron conducting CNT networks throughout the insulating PLA matrix.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 268)

Pages:

365-369

Citation:

Online since:

October 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Anderson, K.S., Schreck, K.M., and Hillmyer, M.A., Toughening Polylactide. Polymer Reviews, 2008. 48(1): pp.85-108.

DOI: 10.1080/15583720701834216

Google Scholar

[2] Li, T., Turng, L-S., Gong, S., and Erlacher, K., Polylactide, nanoclay, and core–shell rubber composites. Polymer Engineering & Science, 2006. 46(10): pp.1419-1427.

DOI: 10.1002/pen.20629

Google Scholar

[3] Yuan, Q. and Misra, R.D.K., Polymer nanocomposites: current understanding and issues. Materials Science and Technology, 2006. 22(7): pp.742-755.

DOI: 10.1179/174328406x101292

Google Scholar

[4] Moon, S. -I., Jin, F, Lee, C-J, Tsutsumi, S., and Hyon, S-H., Novel Carbon Nanotube/Poly(L-lactic acid) Nanocomposites; Their Modulus, Thermal Stability, and Electrical Conductivity. Macromolecular Symposia, 2005. 224(1): pp.287-296.

DOI: 10.1002/masy.200550625

Google Scholar

[5] Mat Desa, M.S.Z., Hassan, A., Arsad, A., and Mohammad, N.N.B., Mechanical properties of poly(lactic acid)/multiwalled carbon nanotubes nanocomposites. Materials Research Innovations, 2014. 18(S6): p. S6-14-S6-17.

DOI: 10.1179/1432891714z.000000000924

Google Scholar

[6] Mat Desa, M.S.Z., Hassan, A., Arsad, A., Arjmandi, R., and Mohammad, N.N.B., Influence of rubber content on mechanical, thermal, and morphological behavior of natural rubber toughened poly (lactic acid)–multiwalled carbon nanotube nanocomposites. Journal of Applied Polymer Science, 2016. 133(48).

DOI: 10.1002/app.44344

Google Scholar

[7] Bourbigot, S., Fontaine, G, Gallos, A., and Bellayer, S., Reactive extrusion of PLA and of PLA/carbon nanotubes nanocomposite: processing, characterization and flame retardancy. Polymers for Advanced Technologies, 2011. 22(1): pp.30-37.

DOI: 10.1002/pat.1715

Google Scholar

[8] Villmow, T., Pötschke, P., Pegel, S., Häussler, L., and Kretzschmar, B., Influence of twin-screw extrusion conditions on the dispersion of multi-walled carbon nanotubes in a poly(lactic acid) matrix. Polymer, 2008. 49(16): pp.3500-3509.

DOI: 10.1016/j.polymer.2008.06.010

Google Scholar

[9] Yoon, J.T., Lee, S.C., and Jeong, Y.G., Effects of grafted chain length on mechanical and electrical properties of nanocomposites containing polylactide-grafted carbon nanotubes. Composites Science and Technology, 2010. 70(5): pp.776-782.

DOI: 10.1016/j.compscitech.2010.01.011

Google Scholar

[10] Kuan, C. -F., Kuan, H-S., Ma, C-C.M., and Chen, C-H., Mechanical and electrical properties of multi-wall carbon nanotube/poly(lactic acid) composites. Journal of Physics and Chemistry of Solids, 2008. 69(5–6): pp.1395-1398.

DOI: 10.1016/j.jpcs.2007.10.060

Google Scholar

[11] Mina, M.F., Beg, M.D. H, Islam, M. R, Nizam, A., Alam, A.K.M.M., and Yunus, R.M., Structures and properties of injection-molded biodegradable poly(lactic acid) nanocomposites prepared with untreated and treated multiwalled carbon nanotubes. Polymer Engineering & Science, 2014. 54(2): pp.317-326.

DOI: 10.1002/pen.23564

Google Scholar

[12] Hapuarachchi, T.D. and T. Peijs, Multiwalled carbon nanotubes and sepiolite nanoclays as flame retardants for polylactide and its natural fibre reinforced composites. Composites Part A: Applied Science and Manufacturing, 2010. 41(8): pp.954-963.

DOI: 10.1016/j.compositesa.2010.03.004

Google Scholar

[13] Schartel, B., Pötschke, P., Knoll, U., and Abdel-Goad, M., Fire behaviour of polyamide 6/multiwall carbon nanotube nanocomposites. European Polymer Journal, 2005. 41(5): pp.1061-1070.

DOI: 10.1016/j.eurpolymj.2004.11.023

Google Scholar