Conductivity of Yittria-Stabilized Zirconia Nanostructure Electrolyte for Solid Oxide Fuel Cell Application by Using RF Magnetron Sputtering

Article Preview

Abstract:

Yttria-stabilized zirconia (YSZ) thin films were deposited successfully using RF magnetron sputtering. The substrate had been used are sapphire glass. A pure ceramic of Zr-Y is synthesized and processed into a planar magnetron target which is reactively sputtered with an Argon-Oxygen gas mixture to form Zr-Y-O nanostructure. The aim of this research is to study the conductivity and roughness YSZ thin film by using RF magnetron sputtering by varying the temperature deposition parameter. By lowering the YSZ thin film into nanostructure would enable for SOFC to be operate at lower temperature below 400°C. The YSZ nanostructure were controlled by varying the deposition parameters, including the deposition temperature and the substrate used. The crystalline of YSZ structure at 100W and temperature 300°C. The surface morphology of the films proved that at 300°C temperature rate deposition showed optimum growth morphology and density of YSZ thin films. Besides, the high deposition subtrate temperature affected the thickness of YSZ thin film at 80nm by using surface profiler. A higher rate of deposition is achievable when the sputtering mode of the Zr-Y target is metallic as opposed to oxide. YSZ is synthesizing to obtain the optimum thin film for SOFC application.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 268)

Pages:

352-357

Citation:

Online since:

October 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] An, J., Bae, J., Hong, S., Koo, B., Kim, Y. B., T. M., & Prinz, F. B. (2015). Grain boundary blocking of ionic conductivity in nanocrystalline yttria-doped ceria thin films. Scripta Materialia, 104, 45–48.

DOI: 10.1016/j.scriptamat.2015.03.020

Google Scholar

[2] Bernay, C. E., Ringuedé, A., Colomban, P., Lincot, D., & Cassir, M. (2003).

Google Scholar

[3] Chen, K., L¨, Z., Ai, N., Huang, X., Zhang, Y., Xin, Su, W. (2006). Development of yttria-stabilized zirconia thin films via slurry spin coating for intermediate-to-low temperature solid oxide fuel cells. Journal of Power Sources, 160(1), 436–438.

DOI: 10.1016/j.jpowsour.2006.01.079

Google Scholar

[5] Chen, X. J., Khor, K. A., Chan, S. H., & Yu, L. G. (2004).

Google Scholar

[6] Curtin, S., Gangi, J., IEA, Tan, E. K., Materials, N., Flexcell, Yu, Q. (2014). Development of Fuel Cell and Hydrogen 2OO9-2O1O. Technology Roadmap, 22(3), 55–62. http: /doi. org/10. 1039/b105764m.

Google Scholar

[7] de Souza, S. (1997). Thin-film solid oxide fuel cell with high performance at low-temperature. Solid State Ionics, 98(1-2), 57–61.

DOI: 10.1016/s0167-2738(96)00525-5

Google Scholar

[8] Depla, D., Besnard, A., & Lamas, J. (2016). The influence of the pressure on the microstructure of yttria-stabilized zirconia thin films deposited by dual magnetron sputtering. Vacuum, 125, 118–122.

DOI: 10.1016/j.vacuum.2015.12.013

Google Scholar

[9] Dincer, I., & Colpan, C. O. (2013). Solid Oxide Fuel Cells, 41–44.

Google Scholar

[10] Ding, J., & Liu, J. (2008). An anode-supported solid oxide fuel cell with spray-coated yttria-stabilized zirconia (YSZ) electrolyte film. Solid State Ionics, 179(21-26), 1246–1249.

DOI: 10.1016/j.ssi.2008.01.094

Google Scholar

[11] Fabbri, E., Pergolesi, D., & Traversa, E. (2010). Electrode materials: a challenge for the exploitation of protonic solid oxide fuel cells. Science and Technology of Advanced Materials, 11(4), 044301.

DOI: 10.1088/1468-6996/11/4/044301

Google Scholar

[12] Feng, H., Chen, L., Xie, Z., & Sun, F. (2015). Constructal optimization for a single tubular solid oxide fuel cell. Journal of Power Sources, 286, 406–413.

DOI: 10.1016/j.jpowsour.2015.03.162

Google Scholar

[13] Garcia-Garcia, F. J., Yubero, F., González-Elipe, A. R., Balomenou, S. P., Tsiplakides, D., Petrakopoulou, I., & Lambert, R. M. (2015).

Google Scholar

[14] Guo, C. X., Wang, J. X., He, C. R., & Wang, W. G. (2013). Effect of alumina on the properties of ceria and scandia co-doped zirconia for electrolyte-supported SOFC. Ceramics International, 39(8), 9575–9582.

DOI: 10.1016/j.ceramint.2013.05.076

Google Scholar

[15] Halinen, M. (n. d. ). Improving the performance of solid oxide fuel cell systems.

Google Scholar

[16] Hidalgo, H., Reguzina, E., Millon, E., Mathias, J., Boulmer-Leborgne, Brault, P. (2011). Yttria-stabilized zirconia thin films deposited by pulsed-laser deposition and magnetron sputtering. Surface and Coatings Technology, 205(19), 4495–4499.

DOI: 10.1016/j.surfcoat.2011.03.077

Google Scholar

[17] Ikhu, D., Ahmad, W., Kawada, T., Sakai, N., Yokokawa, H., Dokiya, Tarancón, A. (2013). List of participant. ACS Nano, 13(9), xiii–xiv.

Google Scholar

[18] Jeong, H. J., Kim, J. W., Bae, K., Jung, H., & Shim, J. H. (2013). Atomic Layer Deposition of Ruthenium on Platinum Anode for Direct Methanol Solid Oxide Fuel Cells. ECS Transactions, 57(1), 3059–3062.

DOI: 10.1149/05701.3059ecst

Google Scholar

[19] Kishimoto, H., Yashiro, K., Shimonosono, T., Brito, M. E., Yamaji, K., Horita, T. Mizusaki, J. (2012).

Google Scholar

[20] Ding, J., & Liu, J. (2008). An anode-supported solid oxide fuel cell with spray-coated yttria stabilized zirconia (YSZ) electrolyte film. Solid State Ionics, 179(21–26), 1246–1249.

DOI: 10.1016/j.ssi.2008.01.094

Google Scholar

[21] Fabbri, E., Pergolesi, D., & Traversa, E. (2010). Electrode materials: a challenge for the exploitation of protonic solid oxide fuel cells. Science and Technology of Advanced Materials, 11(4), 44301.

DOI: 10.1088/1468-6996/11/4/044301

Google Scholar

[22] Feng, H., Chen, L., Xie, Z., & Sun, F. (2015). Constructal optimization for a single tubular solid oxide fuel cell. Journal of Power Sources, 286, 406–413.

DOI: 10.1016/j.jpowsour.2015.03.162

Google Scholar

[23] Garcia-Garcia, F. J., Yubero, F., González-Elipe, A. R., Balomenou, S. P., Tsiplakides, D., Petrakopoulou, I., & Lambert, R. M. (2015).

Google Scholar

[24] Götsch, T., Mayr, L., Stöger-Pollach, M., Klötzer, B., & Penner, S. (2015). Preparation and characterization of epitaxially grown unsupported yttria-stabilized zirconia (YSZ) thin films. Applied Surface Science, 331, 427–436.

DOI: 10.1016/j.apsusc.2015.01.068

Google Scholar

[25] Guo, C. X., Wang, J. X., He, C. R., & Wang, W. G. (2013). Effect of alumina on the properties of ceria and scandia co-doped zirconia for electrolyte-supported SOFC. Ceramics International, 39(8), 9575–9582.

DOI: 10.1016/j.ceramint.2013.05.076

Google Scholar