Effect of ZrF4 on the Physical and Absorption Properties of Magnesium Tellurite Glass

Article Preview

Abstract:

Tellurite glass containing zirconium fluoride (ZrF4) with composition of (90-x)TeO2-10MgO-(x)ZrF4,where 0.0 ≤ x ≤ 6.0 in mol% has successfully been prepared by melt quenching technique. X-Ray Diffraction (XRD) pattern verified the amorphous nature of the glass. In this study, the physical and optical properties were investigated in term of density and absorption properties by using Archimedes method and UV-Vis Spectroscopy. It was found that glass density decreases in the range of 4.842 – 4.995 g cm-3 with the increase of ZrF4 concentration. Meanwhile, the molar volume is increased in the range from 29.566 to 30.593 cm3/mol with increase of ZrF4. The absorption edge is found to shift toward a higher wavelength as the ZrF4 concentration is increased. On the other hand, the optical energy band gap shows the decrement from 2.573 to 2.212 eV for indirect transition and from 3.044 to 2.927 eV for direct transition with the addition of ZrF4 concentration while the Urbach energy, increases from 0.302 to 0.498 eV with the increase of ZrF4. All the results will be discussed with respect to the glass composition.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 268)

Pages:

77-81

Citation:

Online since:

October 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. V. Krishnaiah, J. Marques-hueso, K. Suresh, G. Venkataiah, B. S. Richards, Spectroscopy and near infrared upconversion of Er3+ -doped TZNT glasses, J. Lum. 169 (2016). 270–276.

DOI: 10.1016/j.jlumin.2015.08.035

Google Scholar

[2] A. J. Stevenson, P. Gredin, M. Mortier,. Fluoride materials for optical applications : Single crystals , ceramics , glasses , and glass – ceramics, J. Fluo. Chem. 132 (2011) 1165–1173.

DOI: 10.1016/j.jfluchem.2011.07.017

Google Scholar

[3] C. Cheng, Y. Yu, F. Zhang, H. Zhang, & J. Qiu,. Femtosecond laser induced microstructure and luminescence changes in oxyfluoride tellurite glasses. J. Non-Crys. Solids. 406 (2014) 1–4.

DOI: 10.1016/j.jnoncrysol.2014.09.025

Google Scholar

[4] C.E. Smith, R. K. Brow. The Properties and Structure of Zink Magnesium phosphate glasses, J. Non-Crys. Solids. 390 (2014) 51-58.

DOI: 10.1016/j.jnoncrysol.2014.02.010

Google Scholar

[5] S. Terny, M.A. De la Rubia, R. E. Alonso, J. de Frutos, M.A. Frechero, Structure and Electrical Behavior Relationship of Magnesium-Tellurite Glass using Raman and Impedance Spectroscopy. J. Non-Crys. Solid . 411 (2015) 13-18.

DOI: 10.1016/j.jnoncrysol.2014.12.026

Google Scholar

[6] N. M. Yusoff, & M. R. Sahar, Effect of silver nanoparticles incorporated with samarium-doped magnesium tellurite glasses. Phy. B: Phy. Condensed Matter. 456 (2015). 191–196.

DOI: 10.1016/j.physb.2014.08.039

Google Scholar

[7] Y. H. Elbashar, M. I. Ali, H. A. Elshaikh, , Influence of CuO and Al2O3 addition on the optical properties of sodium zinc phosphate glass absorption filters. Optik, 127 (2016) 7041–7053.

DOI: 10.1016/j.ijleo.2016.05.008

Google Scholar

[8] Y. Ma, X. Wang, L. Zhang, F. Huang, & L. Hu,. Increased radiative lifetime of Tm 3 + : 3 F 4→ 3 H 6 transition in oxyfluoride tellurite glasses. Materials Research Bulletin, 64 (2015) 262–266.

DOI: 10.1016/j.materresbull.2014.12.066

Google Scholar

[9] G. Upender, V. G. Sathe, & V. C. Mouli,. Raman spectroscopic characterization of tellurite glasses containing heavy metal oxides. Phys. B: Condensed Matter, 405 (2010) 1269–1273.

DOI: 10.1016/j.physb.2009.11.063

Google Scholar

[10] M. H. M. Zaid, K. A. Matori, S. H. A. Aziz, H. M. Kamari, Z. A. Wahab, N. Effendy, & I. M. Alibe,. Comprehensive study on compositional dependence of optical band gap in zinc soda lime silica glass system for optoelectronic applications. J. Non-Crys. Solids, 449 (2016).

DOI: 10.1016/j.jnoncrysol.2016.07.020

Google Scholar

[11] E. A. Davis and N. F. Mott, Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors. Philosophical Magazine, vol. 22, 179, (1970) 903–922.

DOI: 10.1080/14786437008221061

Google Scholar

[12] S. F. Ismail, M. R. Sahar, & S. K. Ghoshal,. Physical and absorption properties of titanium nanoparticles incorporated into zinc magnesium phosphate glass. Materials Characterization, 111 (2016) 177–182.

DOI: 10.1016/j.matchar.2015.11.030

Google Scholar

[13] E. S. S. Yousef, Characterization of oxyfluoride tellurite glasses through thermal, optical and ultrasonic measurements. J. Phys. C: Solid. 38 (2005) 3970–3975.

DOI: 10.1088/0022-3727/38/21/022

Google Scholar

[14] A. Awang, S. K. Ghoshal, M. R. Sahar, M. Reza Dousti, R. J. Amjad, & F. Nawaz,. Enhanced spectroscopic properties and Judd-Ofelt parameters of Er-doped tellurite glass: Effect of gold nanoparticles. Cur. App. Phys., 13(8), (2013)1813–1818.

DOI: 10.1016/j.cap.2013.06.025

Google Scholar

[15] F. Ahmad, Study the effect of alkali/alkaline earth addition the environment borochromate glasses by means of spectroscopic analysis, J. alloys and Compd. 586 (2014) 505-610.

DOI: 10.1016/j.jallcom.2013.10.105

Google Scholar