Structures and Ligand Field Parameters of Sm3+ Doped Tellurite Glass: Gold Nanoparticles Mediation

Article Preview

Abstract:

Controllable modifications of overall properties of rare-earth doped glasses via gold nanoparticles (Au NPs) mediation prompted gamut research interests. Such glass systems are interesting due to their technological prospects and well as fundamental understanding of surface plasmon resonance effects at metal glass interface responsible for diverse emerging attributes. This motivate us to determine the effects of varying concentration of Au NPs on the structure and ligand field parameters of samarium (Sm3+) doped zinc tellurite glass. Glass samples with composition (79-x)TeO2-20ZnO-1Sm2O3-xAuCl3, where 0 ≤ x ≤ 0.10 mol% are prepared using melt quenching method. X-ray diffraction pattern of all glasses confirmed their amorphous nature. Transmission electron microscopic images verified the existence of Au NPs in a glass matrix matrix with an average size of 10.52 nm. Two surface plasmons resonance band of gold are probed at 652 and 715 nm. Using the UV-Vis absorption spectral data, quantities such as nephelauxetic ratio, bonding parameter and Racah parameters are evaluated. Both bonding parameter and nephelauxetic ratio revealed a reduction with increasing concentration of Au NPs, where decrease in the ionic bonding between Sm3+ and surrounding ligand have clearly indicated an enhancement in the covalency. The values of Racah parameters are decreased as the concentration of Au NPs are increased. The observed reduction in the nephelauxetic function is attributed to the weakening of the localized d-electrons aroused from overlapping d-orbital and ligand orbital. Furthermore, the Raman spectra displayed the structural modification in terms of TeO4 trigonal bipyramidal (tbp) unit, where many TeO4 tbp units are converted into their TeO3 trigonal pyramid (tp) counterparts. Raman bands are found to be located around 102-105 cm-1, 420-424 cm-1, 657-661 cm-1 and 729-736 cm-1. Results are analyzed and compared. Present glass composition is asserted to be useful for the development of photonic devices.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 268)

Pages:

67-71

Citation:

Online since:

October 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. Jaba, A. Mermet, E. Duval, B. Champagnon, Raman spectroscopy studies of Er3+-doped zinc tellurite glasses, J. Non-Cryst. Solids. 351 (2005), 833-837.

DOI: 10.1016/j.jnoncrysol.2005.02.003

Google Scholar

[2] A. Jha, B. Richards, G. Jose, T. Teddy-Fernandez, P. Joshi, X. Jiang, J. Lousteau, Rare-earth ion doped TeO2 and GeO2 glasses as laser materials, Prog. Mater. Sci. 57 (2012), 1426-1491.

DOI: 10.1016/j.pmatsci.2012.04.003

Google Scholar

[3] F. Nawaz, M. R. Sahar, S. K. Ghoshal, A. Awang, I. Ahmed, Concentration dependent structural and spectroscopic properties of Sm3+/Yb3+ co-doped sodium tellurite glass, Physica B. 433 (2014), 89-95.

DOI: 10.1016/j.physb.2013.09.021

Google Scholar

[4] K J. Rao, M. H. Bhat, Investigation of lithium chloride-lithium borate-tellurium dioxide glasses: an example of complex anionic speciation, Phys. Chem. Glasses. 42 (2001), 255-264.

Google Scholar

[5] F. Ahmad, Study the effect of alkali/alkaline earth addition on the environment of borochromate glasses by means of spectroscopic analysis, J. Alloys Compd. 586 (2014), 605-610.

DOI: 10.1016/j.jallcom.2013.10.105

Google Scholar

[6] M. A. Hassan, M. Farouk, A. H. Abdullah, I. Kashef, M. M. ElOkr, ESR and ligand field theory studies of Nd2O3 doped borochoromate glasses, J Alloys Compd. 539 (2012), 233-236.

DOI: 10.1016/j.jallcom.2012.06.060

Google Scholar

[7] S. Morimoto, S. Khonthon, Y. Ohishi, Optical properties of Cr3+ ion in lithium metasilicate Li2O·SiO2 transparent glass-ceramics, J. Non-Cryst. Solids. 354 (2008), 3343-3347.

DOI: 10.1016/j.jnoncrysol.2008.01.025

Google Scholar

[8] A. Terczyńska-Madej, K. Cholewa-Kowalska, M. Łączka, Coordination and valence state of transition metal ions in alkali-borate glasses, Opt. Mater. 33 (2011), 1984-(1988).

DOI: 10.1016/j.optmat.2011.03.046

Google Scholar

[9] P. G. Pavani, K. Sadhana, V. C. Mouli, Optical, physical and structural studies of boro-zinc tellurite glasses, Physica B. 406 (2011), 1242-1247.

DOI: 10.1016/j.physb.2011.01.006

Google Scholar

[10] Y. A. Tanko, M. R. Sahar, S. K. Ghoshal, S. G. Abdu, Gold nanoparticles activated samarium doped tellurite glass medium for plasmonic laser. in 6th IGCESH 2016. Malaysia.

Google Scholar

[11] K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, The optical properties of metal nanoparticles: the influence of size, shape and dielectric environment, J. Phys. Chem. B. 107 (2003), 668-677.

DOI: 10.1021/jp026731y

Google Scholar

[12] Y. A. Tanko, S. K. Ghoshal, M. R. Sahar, Ligand field and Judd-Ofelt intensity parameters of samarium doped tellurite glass, J. Mol. Struct. 1117, (2016) 64-68.

DOI: 10.1016/j.molstruc.2016.03.083

Google Scholar

[13] G. Giridhar, S. S. Sastry, M. Rangacharyulu, Spectroscopic studies on Pb3O4-ZnO-P2O5 glasses doped with transition metal ions. Physica B. 406 (2011), 4027-4030.

DOI: 10.1016/j.physb.2011.07.024

Google Scholar

[14] R. V. S. S. N. Ravikumar, R. Komatsu, K. Ikeda, A. V. Chandrasekhar, B. J. Reddy, Y. P. Reddy, P. S. Rao, EPR and optical studies on transition metal doped LiRbB4O7 glasses J. Phys. Chem. Solids. 64 (2003), 261-264.

DOI: 10.1016/s0022-3697(02)00289-5

Google Scholar

[15] O. Noguera, T. Merle-Méjean, A. P. Mirgorodsky, M. B. Smirnov, P. Thomas, J. C. Champarnaud-Mesjard, Vibrational and structural properties of glass and crystalline phases of TeO2, J. Non-Cryst. Solids. 330 (2003), 50-60.

DOI: 10.1016/j.jnoncrysol.2003.08.052

Google Scholar

[16] G. S. Murugan, Y. Ohishi, Raman spectroscopic studies of TeO2-BaO-SrO-Nb2O5 glasses: Structure-property correlations, J. Appl. Phys. 96 (2004), 2437-2442.

DOI: 10.1063/1.1772890

Google Scholar

[17] C. Y. Xu, P. X. Zhang, L. Yan, Blue shift of Raman peak from coated TiO2 nanoparticles, J. Raman Spectrosc. 32 (2001), 862-865.

DOI: 10.1002/jrs.773

Google Scholar

[18] G. Upender, S. Ramesh, M. Prasad, V. G. Sathe, V. C. Mouli, Optical band gap, glass transition temperature and structural studies of (100-2x)TeO2-xAg2O-xWO3 glass system, J. Alloys Compd. 504 (2010), 468-474.

DOI: 10.1016/j.jallcom.2010.06.006

Google Scholar

[19] M. R. Sahar, K. Sulhadi, M. S. Rohani, Spectroscopic studies of TeO2-ZnO-Er2O3 glass system, J. Mater. Sci. 42 (2007), 824-827.

DOI: 10.1007/s10853-006-0095-7

Google Scholar

[20] F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, P. Nordlander, Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption, ACS Nano. 2 (2008).

DOI: 10.1021/nn800047e

Google Scholar