AZ31 and WE43 Alloys for Biomedical Applications

Article Preview

Abstract:

Magnesium and its alloys are considered for application as materials for biodegradable implants as they have mechanical properties similar to bone tissue. High demands on corrosion and mechanical properties are made on these alloys. While mechanical properties of magnesium are usually enhanced by alloying, corrosion properties may deteriorate. This paper is focused on the comparison of magnesium alloys AZ31 (3 wt. % Al, 1 wt. % Zn) and WE43 (4 wt. % Y, 3 wt. % Nd) which are considered for biomedical applications. Besides the type of alloying elements, the preparation process has also great impact on final mechanical and corrosion properties. Alloying elements may be dissolved in magnesium matrix or they can form intermetallic phases, which alter final properties. Microstructure, mechanical and corrosion properties of AZ31 and WE43 were studied and compared with pure magnesium.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 270)

Pages:

205-211

Citation:

Online since:

November 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Wu, R.S. Chen, W. Ke, Microstructure and mechanical properties of a sand-cast Mg–Nd–Zn alloy. Materials & Design 2014, 58, 324-331.

DOI: 10.1016/j.matdes.2014.01.061

Google Scholar

[2] K.F. Farraro, K.E. Kim, S.L.Y. Woo, J.R. Flowers,; McCullough, M.B., Revolutionizing orthopaedic biomaterials: The potential of biodegradable and bioresorbable magnesium-based materials for functional tissue engineering. Journal of Biomechanics 2014, 47 (9), 1979-(1986).

DOI: 10.1016/j.jbiomech.2013.12.003

Google Scholar

[3] F. Witte, The history of biodegradable magnesium implants: A review. Acta Biomaterialia 2010, 6 (5), 1680-1692.

DOI: 10.1016/j.actbio.2010.02.028

Google Scholar

[4] L.N. Zhang, Z.T. Hou, X. Ye, Z.B. Xu, X. L Bai, P. Shang, The effect of selected alloying element additions on properties of Mg-based alloy as bioimplants: A literature review. Frontiers of Materials Science 2013, 7 (3), 227-236.

DOI: 10.1007/s11706-013-0210-z

Google Scholar

[5] M.P. Staiger, A.M. Pietak, J. Huadmai, G. Dias, Magnesium and its alloys as orthopedic biomaterials: A review. Biomaterials 2006, 27 (9), 1728-1734.

DOI: 10.1016/j.biomaterials.2005.10.003

Google Scholar

[6] G.L. Song, A. Atrens, Corrosion Mechanisms of Magnesium Alloys. Advanced Engineering Materials 1999, 1 (1), 11-33.

Google Scholar

[7] D. Dvorský, J. Kubásek, D. Vojtěch, I. Voňavková, M. Veselý, M. Čavojský, Structure and mechanical characterization of Mg-Nd-Zn alloys prepared by different processes. IOP Conference Series: Materials Science and Engineering 2017, 179 (1), 012018.

DOI: 10.1088/1757-899x/179/1/012018

Google Scholar

[8] X. Zhao, L. Shi, J. Xu, A Comparison of Corrosion Behavior in Saline Environment: Rare Earth Metals (Y, Nd, Gd, Dy) for Alloying of Biodegradable Magnesium Alloys. Journal of Materials Science & Technology 2013, 29 (9), 781-787.

DOI: 10.1016/j.jmst.2013.05.017

Google Scholar

[9] M. Peter, Effect of Composition and Microstructure on Mechanical and Corrosion Properties in Magnesium Alloys with a Potential for Medical Applications. Universita Karlova v Praze, (2014).

Google Scholar

[10] D. Dvorsky, J. Kubasek, D. Vojtech, M. Cavojsky, Structure and mechanical properties of WE43 prepared by powder metallurgy route. Manufacturing Technology 2016, 16 (5), 896-902.

DOI: 10.21062/ujep/x.2016/a/1213-2489/mt/16/5/896

Google Scholar

[11] G. Song, A. Atrens, Understanding Magnesium Corrosion—A. Framework for Improved Alloy Performance. Advanced Engineering Materials 2003, 5 (12), 837-858.

DOI: 10.1002/adem.200310405

Google Scholar

[12] Y. Fan, G. Wu, C. Zhai, Influence of cerium on the microstructure, mechanical properties and corrosion resistance of magnesium alloy. Materials Science and Engineering: A 2006, 433 (1–2), 208-215.

DOI: 10.1016/j.msea.2006.06.109

Google Scholar

[13] A. Pardo, M.C. Merino, A. E. Coy, R. Arrabal, F. Viejo, E. Matykina, Corrosion behaviour of magnesium/aluminium alloys in 3. 5 wt. % NaCl. Corrosion Science 2008, 50 (3), 823-834.

DOI: 10.1016/j.corsci.2007.11.005

Google Scholar

[14] R. Xin, Y. Luo, A. Zuo, J. Gao, Q. Liu, Texture effect on corrosion behavior of AZ31 Mg alloy in simulated physiological environment. Materials Letters 2012, 72, 1-4.

DOI: 10.1016/j.matlet.2011.11.032

Google Scholar

[15] R. Xin, B. Li, L. Li, Q. Liu, Influence of texture on corrosion rate of AZ31 Mg alloy in 3. 5 wt. % NaCl. Materials & Design 2011, 32 (8–9), 4548-4552.

DOI: 10.1016/j.matdes.2011.04.031

Google Scholar

[16] K.D. Ralston, N. Birbilis, C.H.J. Davies, Revealing the relationship between grain size and corrosion rate of metals. Scripta Materialia 2010, 63 (12), 1201-1204.

DOI: 10.1016/j.scriptamat.2010.08.035

Google Scholar

[17] D. Dvorsky, J. Kubasek, D. Vojtěch, F. Prusa, K. Nova, Preparation of WE43 using powder metallurgy route. Manufacturing Technology 2016, 16 (4), 680-687.

DOI: 10.21062/ujep/x.2016/a/1213-2489/mt/16/4/680

Google Scholar

[18] D.L. Yin, J.T. Wang, J.Q. Liu, X. Zhao, On tension–compression yield asymmetry in an extruded Mg–3Al–1Zn alloy. Journal of Alloys and Compounds 2009, 478 (1–2), 789-795.

DOI: 10.1016/j.jallcom.2008.12.033

Google Scholar

[19] P.S. Roodposhti, A. Sarkar, K.L. Murty, H. Brody, R. Scattergood, Grain boundary sliding mechanism during high temperature deformation of AZ31 Magnesium alloy. Materials Science and Engineering: A 2016, 669, 171-177.

DOI: 10.1016/j.msea.2016.05.076

Google Scholar

[20] C. Wang, M. Sun, F. Zheng, L. Peng, W. Ding, Improvement in grain refinement efficiency of Mg–Zr master alloy for magnesium alloy by friction stir processing. Journal of Magnesium and Alloys 2014, 2 (3), 239-244.

DOI: 10.1016/j.jma.2014.09.001

Google Scholar

[21] J. Kubásek, D. Dvorský, M. Čavojský, D. Vojtěch, N. Beronská, M. Fousová, Superior Properties of Mg–4Y–3RE–Zr Alloy Prepared by Powder Metallurgy. Journal of Materials Science & Technology 2017, 33 (7), 652-660.

DOI: 10.1016/j.jmst.2016.09.019

Google Scholar

[22] M. G. Jiang, H. Yan, R.S. Chen, Twinning, recrystallization and texture development during multi-directional impact forging in an AZ61 Mg alloy. Journal of Alloys and Compounds 2015, 650, 399-409.

DOI: 10.1016/j.jallcom.2015.07.281

Google Scholar

[23] M.G. Jiang, C. Xu, T. Nakata, H. Yan, R.S. Chen, S. Kamado, Rare earth texture and improved ductility in a Mg-Zn-Gd alloy after high-speed extrusion. Materials Science and Engineering: A 2016, 667, 233-239.

DOI: 10.1016/j.msea.2016.04.093

Google Scholar

[24] Y.P. Wu, X.M. Zhang, Y.L. Deng, C.P. Tang, Y.Y. Zhong, Effect of compression conditions on the microstructure and texture of a Mg–RE alloy. Materials Science and Engineering: A 2015, 644, 152-158.

DOI: 10.1016/j.msea.2015.07.064

Google Scholar

[25] H. Windhagen, K. Radtke, A. Weizbauer, J. Diekmann, Y. Noll, U. Kreimeyer, R. Schavan, C. Stukenborg-Colsman, H. Waizy, Biodegradable magnesium-based screw clinically equivalent to titanium screw in hallux valgus surgery: short term results of the first prospective, randomized, controlled clinical pilot study. BioMedical Engineering OnLine 2013, 12 (1), 62.

DOI: 10.1186/1475-925x-12-62

Google Scholar

[26] Y. Zong, G. Yuan, X. Zhang, L. Mao, J. Niu, W. Ding, Comparison of biodegradable behaviors of AZ31 and Mg–Nd–Zn–Zr alloys in Hank's physiological solution. Materials Science and Engineering: B 2012, 177 (5), 395-401.

DOI: 10.1016/j.mseb.2011.09.042

Google Scholar