[1]
L. Reig, M.M. Tashima, L. Soriano, M.V. Borrachero, J. Monzó, J. Payá, Alkaline activation of ceramic waste materials, Waste Biomass. Valoriz. 4 (2013) 729-736.
DOI: 10.1007/s12649-013-9197-z
Google Scholar
[2]
L. Reig, M.M. Tashima, M.V. Borrachero, J. Monzó, C.R. Cheeseman, J. Paya, Properties and microstructure of alkali-activated red clay brick waste, Constr. Buil. Mater. 43 (2013) 98-106.
DOI: 10.1016/j.conbuildmat.2013.01.031
Google Scholar
[3]
M.C. Bignozzi, O. Fusco, A. Fregni, L. Guardigli, R. Gulli, Ceramic waste as new precursors for geopolymerization Adv. Sci. Tech., 92 (2014) 26-31.
DOI: 10.4028/www.scientific.net/ast.92.26
Google Scholar
[4]
E. Sassoni, P. Pahlavan, E. Franzoni, M.Ch. Bignozzi, Valorization of brick waste by alkali-activation: A study on the possible use for masonry repointing, Ceram. Int. 42 (2016) 14685-14694.
DOI: 10.1016/j.ceramint.2016.06.093
Google Scholar
[5]
P. Chindaprasirt, T. Chareerat, V. Sirivivatnanon, Workability and strength of coarse high calcium fly ash geopolymer, Cem. Concr. Compos. 29 (2007) 224-229.
DOI: 10.1016/j.cemconcomp.2006.11.002
Google Scholar
[6]
M. Palacios, P. F. G. Banfill, F. Puertas, Rheology and Setting of Alkali-Activated Slag Pastes and Mortars: Effect of Organic Admixture, ACI Materials Journal. 105 (2008) 140-148.
DOI: 10.14359/19754
Google Scholar
[7]
A. Palomo, P.F.G. Banfill, A. Fernández-Jiménez, D.S. Swift, Properties of alkali activated fly ashes determined from rheological measurements, Adv. Cem. Res. 17 (2005) 143-151.
DOI: 10.1680/adcr.2005.17.4.143
Google Scholar
[8]
A. Poulesquen, F. Frizon, D. Lambertin Rheological behavior of alkali-activated metakaolin during geopolymerization, J. Non-Cryst. Solids. 357 (2011) 3565-3571.
DOI: 10.1016/j.jnoncrysol.2011.07.013
Google Scholar
[9]
M. Romagnoli, C. Leonelli, E. Kamse, M. Lassinantti Gualtieri, Rheology of geopolymer by DOE approach, Constr.Build. Mater. 36 (2012) 251-258.
DOI: 10.1016/j.conbuildmat.2012.04.122
Google Scholar
[10]
P. Steins, A. Poulesquen, O. Diat, F. Frizon, Structural Evolution during Geopolymerization from an Early Age to Consolidated Material, Langmuir 28 (2012) 8502-8510.
DOI: 10.1021/la300868v
Google Scholar
[11]
T. G. Mezger, The Rheology Handbook, 4th ed., Vincentz Network, Hanover, Germany, (2014).
Google Scholar
[12]
A. Favier, J. Hot, G. Habert, N. Roussela, J-B. d'Espinose de Lacailleriecd, Flow properties of MK-based geopolymer pastes. A comparative study with standard Portland cement pastes, Soft Matter. 10 (2014) 1134-1141.
DOI: 10.1039/c3sm51889b
Google Scholar
[13]
N. Roussel, Understanding the rheology of concrete, Woodhead Publishing, Cambridge, (2012).
Google Scholar
[14]
A. Aboulayt, M. Riahi, S. Anis, M. Ouazzani Touhami, R. Moussa, Rheological behavior of a fresh geopolymer based on metakaolin: effect of the introduction of calcium carbonate, IJIAS. 7 (2014) 1170-1177.
DOI: 10.1016/j.apt.2017.06.022
Google Scholar