Physical and Chemical Methods of Methane Utilization in Ukrainian Coal Mines

Article Preview

Abstract:

Associated gas of coal and minor oil deposits emitting into the atmosphere is considered to be valuable energy resource requiring proper utilization both from the economic and environmental viewpoints. It is proposed to develop mobile gas-hydrate plants to utilize associated gas of mines and minor oil and gas deposits. Hydrogenerating technology to collect and utilize coalmine methane immediately at the degassing wells of coal mines and oil extraction platform has been developed. Thermobaric parameters along with physical and chemical effect upon hydrate-formation process have been substantiated and selected. Certain degree of mechanical impact as well as magnetic field and ultrasound influence upon the process of hydrate formation has been proved. The technology will make it possible to obtain end product within the degassing area for its further transportation to consumers at long distances.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 277)

Pages:

147-156

Citation:

Online since:

June 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Bondarenko, V.I., & Mossur, A.P. (2008).

Google Scholar

[2] Bondarenko, V., Svietkina, O., & Sai, K. (2017). Study of the Formation Mechanism of gas Hydrates of Methane in the Presence of Surface-Active Substances. Eastern-European Journal of Enterprise Technologies, 5-6(89), 48-55.

DOI: 10.15587/1729-4061.2017.112313

Google Scholar

[3] Ovchynnikov, M., Ganushevych, K., & Sai, K. (2013). Methodology of Gas Hydrates Formation from Gaseous Mixtures of Various Compositions. Annual Scientific-Technical Collection ‒ Mining of Mineral Deposits, 203-205.

DOI: 10.1201/b16354-36

Google Scholar

[4] Lozynskyi, V.G.. (2016). Experimental study of the influence of crossing the disjunctive geological faults on thermal regime of underground gasifier. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5), 21-29.

DOI: 10.29202/nvngu/2018-3/5

Google Scholar

[5] Hanushevych, K., & Srivastava, V. (2017). Coalbed methane: places of origin, perspectives of extraction, alternative methods of transportation with the use of gas hydrate and nanotechnologies. Mining of Mineral Deposits, 11(3), 23-33.

DOI: 10.15407/mining11.03.023

Google Scholar

[6] Maksymova, E. (2018). Selecting the method of gas hydrate deposits development in terms of the regularities of their formation. Mining of Mineral Deposits, 12(1), 103-108.

DOI: 10.15407/mining12.01.103

Google Scholar

[7] Ahafonov, O.V., Snihovskyi, O.V., Dedich, I.O., Zahorskis, A.I., Bondarenko, V.I., Ovchynnikov, M.P., Hanushevych, K.A., Sai, K.S., & Maksymova, E.O. (2013).

Google Scholar

[8] BP Global. (2013). BP Statistical Review of World Energy. Report. London: BP Statistical Review of World Energy.

Google Scholar

[9] Kobolev, V. (2017). Structural, tectonic and fluid-dynamic aspects of deep degassing of the Black Sea megatrench. Mining of Mineral Deposits, 11(1), 31-49.

DOI: 10.15407/mining11.01.031

Google Scholar

[10] Smirnov, L.F. (1990). Tekhnologicheskoe ispol'zovanie gazovykh gidratov. Prirodnye i tekhnogennye gazovye gidraty, 127–166.

Google Scholar

[11] Bondarenko, V., Vytiaz, O. Yu., & Zotsenko, M.L. (2015). Hazohidraty. Hidratoutvorennia ta osnovy rozrobky hazovykh hidrativ: monohrafiia. Dnepropetrovsk: LizunovPress.

Google Scholar

[12] Chilton, T.H., & Colburn, A.P. (1934). Mass Transfer Coefficients: Prediction from Data on Heat Transfer and Fluid Friction. Industrial and engineering chemistry, 26, 1183-1187.

DOI: 10.1021/ie50299a012

Google Scholar

[13] Bondarenko, V., Maksymova, E., & Koval, O. (2013). Genetic classification of gas hydrates deposits types by geologic-structural criteria. Annual Scientific-Technical Collection ‒ Mining of Mineral Deposits, 115-119.

DOI: 10.1201/b16354-20

Google Scholar

[14] Gudmundsson, J.G. (2002). Cold Flow Hydrate Technology. In 4th International Confernce on Gas Hydrates. Yokohama, Japan.

Google Scholar

[15] Larsen, R. (2005). Hydrates in petroleum production. In Lecture note for TEP 34 Gashydrates.

Google Scholar

[16] Singh, P., Venkatesan, R., & Fogler, S. (2000). Formation and Aging of Incipient Thin Film Wax-Oil Gels. AIChE Journal, 46(5).

DOI: 10.1002/aic.690460517

Google Scholar

[17] Khamskiy, E.V. (1979). Kristallizatsiya v khimicheskoy promyshlennosti. Moskva: Khimiya.

Google Scholar

[18] Landau, L.D., & Lifshits E.M. (2002). Teoreticheskaya fizika. Moskva: Fizmatlit.

Google Scholar

[19] Mitrofanov, V.V., & Sokolov V.I. (1974). O prirode effekta Rassela. Fizika tverdogo tela, 24-35.

Google Scholar

[20] Kerroll, D. (2007). Gidraty prirodnogo gaza. Moskva: Premium Inzhiniring.

Google Scholar

[21] Pedchenko, M., & Pedchenko, L. (2017). Analysis of gas hydrate deposits development by applying elements of hydraulic borehole mining technology. Mining of Mineral Deposits, 11(2), 52-58.

DOI: 10.15407/mining11.02.052

Google Scholar

[22] Klyuchnikov, N.G. (1988). Neorganicheskiy sintez. Moskva: Prosveshchenie.

Google Scholar

[23] Maksymova, E., Ovchynnikov, M., Svietkina, O. (2014). Research kinetics of hydrate formation in the magnetic field. Min. Miner. Depos., 8(3), 293-298.

DOI: 10.15407/mining08.03.293

Google Scholar

[24] Dukhanin, G.P. (2010). Termodinamicheskie raschety khimicheskikh reaktsiy. Volgograd: VolgGTU.

Google Scholar

[25] Champe, P., Harvey, D., & Ferrier D. (2005). Lippincott's illustrated reviews: biochemistry. Philadelphiа: Lippincott Williams & Wilkins.

Google Scholar

[26] Kislovskiy ,L.D., & Puchkov, V.V. (1971). Metastabil'nye struktury v vodnykh rastvorakh. Voprosy teorii magnitnoy obrabotki vody i vodnykh system, 25-31.

Google Scholar

[27] Bondarenko, V., Svietkina, O., & Sai, K. (2018). Effect of mechanoactivated chemical additives on the process of gas hydrate formation. Eastern-European Journal of Enterprise Technologies, 1-6(91), 17-26.

DOI: 10.15587/1729-4061.2018.123885

Google Scholar