The Mathematic Model and Method for Solving the Dirichlet Heat-Exchange Problem for Empty Isotropic Rotary Body

Article Preview

Abstract:

It is the first generalized 3D mathematic model, which is created for calculating temperature fields in the empty isotropic rotary body, which is restricted by end surfaces and lateral surface of rotation and rotates with constant angular velocity around the axis OZ, with taking into account finite velocity of the heat conductivity in the form of the Dirichlet problem. In this work, an integral transformation was formulated for the 2D finite space, with the help of which a temperature field in the empty isotropic rotary body was determined in the form of convergence series by the Fourier functions.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 277)

Pages:

168-177

Citation:

Online since:

June 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Berdnik, M. H. (2005). Matematichne modeljuvannja temperaturnogo polja v cilіndrі, jakij obertaetsja, z urahuvannjam kіncevoi shvidkostі poshirennja tepla. Pitannja prikladnoї matematiki і matematichnogo modeljuvannja, 37-44.

Google Scholar

[2] Berdnyk, M.H. (2017). Mathematical model of and method for solving the neumann generalized heat-exchange problem for a cylinder with homogeneous layers. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (4), 86-91.

DOI: 10.29202/nvngu/2018-3/18

Google Scholar

[3] Povstenko, Y. (2013). Time-fractional heat conduction in an infinite medium with a spherical hole under Robin boundary condition. Fract. Calc. Appl. Anal, (16), 356-369.

DOI: 10.2478/s13540-013-0022-y

Google Scholar

[4] Kuwashimo Kensuke, & Tominori Yamada. (1978). Temperature distribution within a rotatinq cylindrieal body. Bull. JSME, 21(152), 266-272.

Google Scholar

[5] Markovich, B.M. (2010). Rіvnjannja matematichnoї fіziki. Lvіv.: Vidavnictvo Lvіvskoi polіtehnіki.

Google Scholar

[6] Shajdurov, V.V. (1989). Mnogosetochnye metody konechnyh jelementov. M.: Nauka.

Google Scholar

[7] Lopushanska, G.P. (2014). Peretvorennja Furje, Laplasa: uzagalnennja ta zastosuvannja. Lvіv.: LNU іm. Іvana Franka.

Google Scholar