[1]
A.A. Peterson, F. Vogel, R.P. Lachance, M. Fröling, M.J.J. Antal, J.W. Tester. Thermochemical biofuel production in hydrothermal media: a review of sub- and supercritical water technologies. ENERG ENVIRON SCI. 1 (2008), 32-65.
DOI: 10.1039/b810100k
Google Scholar
[2]
T. Dudziak, P. Gajewski, B. Śnieżyński, V. Deodeshmukh, M. Witkowska, W. Ratuszek, K. Chruściel. Neural Network Modelling Studies of Steam Oxidised Kinetic Behaviour of Advanced Steels and Ni-based alloys at 800 °C for 3000 hours. CORROS SCI. 133 (2018).
DOI: 10.1016/j.corsci.2018.01.013
Google Scholar
[3]
G. Maier, H. Riedel, B. Nieweg, C. Somsen, G. Eggeler, J. Klöwer, R. Mohrmann. Cyclic deformation and lifetime of Alloy 617B during thermo-mechanical fatigue. High Temperature Technology. 30 (2013), 27-35.
DOI: 10.3184/096034013x13636905345685
Google Scholar
[4]
N.Q. Zhang, Z.L. Zhu, H. Xu, X.P. Mao, J. Li. Oxidation of ferritic and ferritic–martensitic steels in flowing and static supercritical water. CORROS SCI. 103 (2016), 124-131.
DOI: 10.1016/j.corsci.2015.10.017
Google Scholar
[5]
G. Bertali, F. Scenini, M.G. Burke. Advanced microstructural characterization of the intergranular oxidation of Alloy 600. CORROS SCI. 100 (2015), 474-483.
DOI: 10.1016/j.corsci.2015.08.010
Google Scholar
[6]
S.L. Yun, S.W. Kim, S.S. Hwang, P.K. Hong, C. Jang. Intergranular oxidation of Ni-based Alloy 600 in a simulated PWR primary water environment. CORROS SCI. 108 (2016), 125-133.
DOI: 10.1016/j.corsci.2016.02.040
Google Scholar
[7]
S.Y. Persaud, A. Korinek, J. Huang, G.A. Botton, R.C. Newman. Internal oxidation of Alloy 600 exposed to hydrogenated steam and the beneficial effects of thermal treatment. CORROS SCI. 86 (2014), 108-122.
DOI: 10.1016/j.corsci.2014.04.041
Google Scholar
[8]
X. Tang, S. Wang, L. Qian, M. Ren, P. Sun, Y. Li, J.Q. Yang. Corrosion Properties of Candidate Materials in Supercritical Water Oxidation Process. J ADV OXID TECHNOL. 19 (2016), 141-157.
DOI: 10.1515/jaots-2016-0119
Google Scholar
[9]
J. Yang, S. Wang, D. Xu, G. Yang, C. Yang, Y. Li. Effect of ammonium chloride on corrosion behavior of Ni-based alloys and stainless steel in supercritical water gasification process. INT J HYDROGEN ENERG. 31 (2017), 19788-19797.
DOI: 10.1016/j.ijhydene.2017.05.078
Google Scholar
[10]
J. Yang, S. Wang, X. Tang, Y. Wang, Y. Li. Effect of low oxygen concentration on the oxidation behavior of Ni-based alloys 625 and 825 in supercritical water. J SUPERCRIT FLUID. 131 (2018), 1-10.
DOI: 10.1016/j.supflu.2017.07.008
Google Scholar