Corrosion Behavior of Incoloy 825 in High Temperature Vapor Containing Sodium Chloride

Article Preview

Abstract:

Corrosion behavior of Incoloy 825 was studied in high temperature vapor with high concentration of NaCl. After 80 h exposure, a bi-layer structure was formed on sample surface after exposure. The outer layer is consisted of loose and large-grain oxides, and the inner layer is composed of fine-grain oxide. The whole layer was identified to be CrOOH/Fe3O4/Cr2O3/Incoloy 825 from outer to inner.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 278)

Pages:

102-106

Citation:

Online since:

July 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.A. Peterson, F. Vogel, R.P. Lachance, M. Fröling, M.J.J. Antal, J.W. Tester. Thermochemical biofuel production in hydrothermal media: a review of sub- and supercritical water technologies. ENERG ENVIRON SCI. 1 (2008), 32-65.

DOI: 10.1039/b810100k

Google Scholar

[2] T. Dudziak, P. Gajewski, B. Śnieżyński, V. Deodeshmukh, M. Witkowska, W. Ratuszek, K. Chruściel. Neural Network Modelling Studies of Steam Oxidised Kinetic Behaviour of Advanced Steels and Ni-based alloys at 800 °C for 3000 hours. CORROS SCI. 133 (2018).

DOI: 10.1016/j.corsci.2018.01.013

Google Scholar

[3] G. Maier, H. Riedel, B. Nieweg, C. Somsen, G. Eggeler, J. Klöwer, R. Mohrmann. Cyclic deformation and lifetime of Alloy 617B during thermo-mechanical fatigue. High Temperature Technology. 30 (2013), 27-35.

DOI: 10.3184/096034013x13636905345685

Google Scholar

[4] N.Q. Zhang, Z.L. Zhu, H. Xu, X.P. Mao, J. Li. Oxidation of ferritic and ferritic–martensitic steels in flowing and static supercritical water. CORROS SCI. 103 (2016), 124-131.

DOI: 10.1016/j.corsci.2015.10.017

Google Scholar

[5] G. Bertali, F. Scenini, M.G. Burke. Advanced microstructural characterization of the intergranular oxidation of Alloy 600. CORROS SCI. 100 (2015), 474-483.

DOI: 10.1016/j.corsci.2015.08.010

Google Scholar

[6] S.L. Yun, S.W. Kim, S.S. Hwang, P.K. Hong, C. Jang. Intergranular oxidation of Ni-based Alloy 600 in a simulated PWR primary water environment. CORROS SCI. 108 (2016), 125-133.

DOI: 10.1016/j.corsci.2016.02.040

Google Scholar

[7] S.Y. Persaud, A. Korinek, J. Huang, G.A. Botton, R.C. Newman. Internal oxidation of Alloy 600 exposed to hydrogenated steam and the beneficial effects of thermal treatment. CORROS SCI. 86 (2014), 108-122.

DOI: 10.1016/j.corsci.2014.04.041

Google Scholar

[8] X. Tang, S. Wang, L. Qian, M. Ren, P. Sun, Y. Li, J.Q. Yang. Corrosion Properties of Candidate Materials in Supercritical Water Oxidation Process. J ADV OXID TECHNOL. 19 (2016), 141-157.

DOI: 10.1515/jaots-2016-0119

Google Scholar

[9] J. Yang, S. Wang, D. Xu, G. Yang, C. Yang, Y. Li. Effect of ammonium chloride on corrosion behavior of Ni-based alloys and stainless steel in supercritical water gasification process. INT J HYDROGEN ENERG. 31 (2017), 19788-19797.

DOI: 10.1016/j.ijhydene.2017.05.078

Google Scholar

[10] J. Yang, S. Wang, X. Tang, Y. Wang, Y. Li. Effect of low oxygen concentration on the oxidation behavior of Ni-based alloys 625 and 825 in supercritical water. J SUPERCRIT FLUID. 131 (2018), 1-10.

DOI: 10.1016/j.supflu.2017.07.008

Google Scholar