Graphene Oxide/MnO2 Composites Synthesized by "Quenching" for Supercapacitors with High Capacitance

Article Preview

Abstract:

Graphene Oxide (GO)/manganese oxide (MnO2) composites with different feeding ratio are synthesized by a simple and economic soft chemical route in a water-isopropyl alcohol under different cooling method. The SEM results show that MnO2 nanoparticle with smaller size (8nm) homogeneously coats on the surfaces of graphene oxide under quick ice quenching, and the better electrochemical properties is obtained. The composites with feeding ratio 1:9 have maximum capacitance value, because of agglomerate induced by too much MnO2. The specific capacitances calculated by galvanostatic charge/discharge curve were 312.87 F/g by ice water quenching and 253.12 F/g by reflux cooling to room temperature. The GO/MnO2 electrode retained about 85.12% (with quick ice quenching) and 88.16% (with reflux cooling) of initial capacitance after 1000 cycles, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 278)

Pages:

121-129

Citation:

Online since:

July 2018

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Zhang Y, Feng H, Wu X, Progress of electrochemical capacitor electrode materials: A review, International Journal of Hydrogen Energy. 34(11) (2009) 4889-4899.

DOI: 10.1016/j.ijhydene.2009.04.005

Google Scholar

[2] Miller J. R., Simon, P., Electrochemical capacitors for energy management, Science. 321 (2008) 651-652.

Google Scholar

[3] Zhang S, Peng C, Ng K C, Nanocomposites of manganese oxides and carbon nanotubes for aqueous supercapacitor stacks, Electrochimica Acta. 55(25) (2010) 7447-7453.

DOI: 10.1016/j.electacta.2010.01.078

Google Scholar

[4] Chavez-Valdez A, Shaffer M S, Boccaccini A R., Applications of graphene electrophoretic deposition. A review, Journal of Physical Chemistry B. 117(6) (2013) 1502-1515.

DOI: 10.1021/jp3064917

Google Scholar

[5] Cottineau T, Toupin M, Delahaye T, Nanostructured transition metal oxides for aqueous hybrid electrochemical supercapacitors. Applied Physics A. 2006, 82(4) 599-606.

DOI: 10.1007/s00339-005-3401-3

Google Scholar

[6] Lei Y, Fournier C, Pascal J L, Mesoporous carbon-manganese oxide composite as negative electrode material for supercapacitors, Microporous & Mesoporous Materials. 110(1) (2008) 167-176.

DOI: 10.1016/j.micromeso.2007.10.048

Google Scholar

[7] Elzbieta Frackowiak, Carbon materials for supercapacitor application, Physical Chemistry Chemical Physics. 9 (2007) 1774-1785.

Google Scholar

[8] Graeme A. Snook, PonKao, Adam S. Best, Conducting-polymer-based supercapacitor devices and electrodes. 196 (2011) 1-12.

Google Scholar

[9] Vadahanambi Sridhar, HyunJun Kim, JungHwan Jung, Defect-Engineered Three-Dimensional Graphene-Nanotube-Palladium Nanostructures with Ultrahigh Capacitance, Acs Nano. 6(12) (2012) 10562-10570.

DOI: 10.1021/nn3046133

Google Scholar

[10] Devaraj, S, Munichandraiah N, Effect of Crystallographic Structure of MnO2 on Its Elec-trochemical Capacitance Properties, Journal of Physical Chemistry C. 112(11) (2008) 4406-4417.

DOI: 10.1021/jp7108785

Google Scholar

[11] C. Z. Yuan, B. Gao, L. F. Shen, S. D. Yang, L. Hao, X. J. Lu, F. Zhang, L. J. Zhang and X. G. Zhang, Hierarchically structured carbon-based composites: Design, synthesis and their application in electrochemical capacitors, Nanoscale. 3 (2011).

DOI: 10.1039/c0nr00423e

Google Scholar

[12] W. D. Zhang, B. Xu and L. C. Jiang, Functional hybrid materials based on carbon nanotubes and metal oxides. Journal of Materials Chemistry. 20 (2010) 6383-6391.

DOI: 10.1039/b926341a

Google Scholar

[13] Y.Q. Sun, Q. Wu and G.Q. Shi, Graphene based new energy materials, Energy & Environmental Science. 4 (2011) 1113-1132.

Google Scholar

[14] Zhu L, Zhang S, Cui Y, One Step Synthesis and Capacitive Performance of Graphene Nanosheets/Mn3O4 Composite, Electrochimica Acta. 89(1) (2013) 18-23.

DOI: 10.1016/j.electacta.2012.10.157

Google Scholar

[15] Liu C L, Chang K H, Hu C C, Microwave-assisted Hydrothermal Synthesis of Mn3O4/Reduced Graphene Oxide Composites for High Power Supercapacitors, Journal of Power Sources. 217(11) (2012) 184-192.

DOI: 10.1016/j.jpowsour.2012.05.109

Google Scholar

[16] Yan J, Fan Z, Wei T, Fast and Reversible Surface Redox Reaction of Graphene-MnO2 Composites as Supercapacitor Electrodes. Carbon, 48(13) (2010) 3825-3833.

DOI: 10.1016/j.carbon.2010.06.047

Google Scholar

[17] Hummers W. S., OffemanR. E., Preparation of graphitic oxide, Journal of American Chemical Society. 80 (1958) 1339-1339.

DOI: 10.1021/ja01539a017

Google Scholar

[18] Brousse T., Toupin M., Dugas R., Athoue L., Crosnier O., Be ´langer D, Crystalline MnO2 as Possible Alternatives to Amorphous Compounds in Electrochemical Supercapacitors, Journal of The Electrochemical Society. 153 (2006) A2171-A2180.

DOI: 10.1149/1.2352197

Google Scholar

[19] Shinomiya T., Gupta V., Miura N, Effects of electrochemical-deposition method and microstructure on the capacitive characteristics of nano-sized manganese oxide. Electrochimica Acta. 51 (2006) 4412-4419.

DOI: 10.1016/j.electacta.2005.12.025

Google Scholar

[20] Beaudrouet E, Salle A L G L, Guyomard D, Nanostructured manganese dioxides: Synthesis and properties as supercapacitor electrode materials, Electrochimica Acta. 54(4) (2009) 1240-1248.

DOI: 10.1016/j.electacta.2008.08.072

Google Scholar

[21] Liu H, Zhang W, Song H, Tremella-like graphene/polyaniline spherical electrode material for supercapacitors, Electrochimica Acta. 146 (2014) 511-517.

DOI: 10.1016/j.electacta.2014.09.083

Google Scholar

[22] Jun Yan, Zhuangjun Fan, Tong Wei, Jie Cheng, Bo Shao, KaiWang, Liping Song, Milin Zhang. Carbon nanotube/MnO2 composites synthesized by microwave-assisted method, Journal of Power Sources. 194 (2009) 1202-1207.

DOI: 10.1016/j.jpowsour.2009.06.006

Google Scholar

[23] Reddy A L M, Shaijumon M M, Gowda S R, Multisegmented Au-MnO2/Carbon Nanotube Hybrid Coaxial Arrays for High-Power Supercapacitor Applications. Journal of Physical Chemistry C. 117(42) (2010) 658-663.

DOI: 10.1021/jp908739q

Google Scholar

[24] Yan Wang, Zhiqiang Shi,Yi Huang, Yanfeng Ma, Chengyang Wang, Mingming Chen, and Yongsheng Chen, Supercapacitor Devices Based on Graphene Materials, J. Phys. Chem. C. 113 (2009) 13103-13107.

DOI: 10.1021/jp902214f

Google Scholar

[25] Shu Juan Bao, Chang Ming Li , Chun-Xian Guo, Yan Qiao, Biomolecule-assisted synthesis of cobalt sulfide nanowires for application in supercapacitors, Journal of Power Sources. 180 (2008) 676-681.

DOI: 10.1016/j.jpowsour.2008.01.085

Google Scholar