[1]
Zhang Y, Feng H, Wu X, Progress of electrochemical capacitor electrode materials: A review, International Journal of Hydrogen Energy. 34(11) (2009) 4889-4899.
DOI: 10.1016/j.ijhydene.2009.04.005
Google Scholar
[2]
Miller J. R., Simon, P., Electrochemical capacitors for energy management, Science. 321 (2008) 651-652.
Google Scholar
[3]
Zhang S, Peng C, Ng K C, Nanocomposites of manganese oxides and carbon nanotubes for aqueous supercapacitor stacks, Electrochimica Acta. 55(25) (2010) 7447-7453.
DOI: 10.1016/j.electacta.2010.01.078
Google Scholar
[4]
Chavez-Valdez A, Shaffer M S, Boccaccini A R., Applications of graphene electrophoretic deposition. A review, Journal of Physical Chemistry B. 117(6) (2013) 1502-1515.
DOI: 10.1021/jp3064917
Google Scholar
[5]
Cottineau T, Toupin M, Delahaye T, Nanostructured transition metal oxides for aqueous hybrid electrochemical supercapacitors. Applied Physics A. 2006, 82(4) 599-606.
DOI: 10.1007/s00339-005-3401-3
Google Scholar
[6]
Lei Y, Fournier C, Pascal J L, Mesoporous carbon-manganese oxide composite as negative electrode material for supercapacitors, Microporous & Mesoporous Materials. 110(1) (2008) 167-176.
DOI: 10.1016/j.micromeso.2007.10.048
Google Scholar
[7]
Elzbieta Frackowiak, Carbon materials for supercapacitor application, Physical Chemistry Chemical Physics. 9 (2007) 1774-1785.
Google Scholar
[8]
Graeme A. Snook, PonKao, Adam S. Best, Conducting-polymer-based supercapacitor devices and electrodes. 196 (2011) 1-12.
Google Scholar
[9]
Vadahanambi Sridhar, HyunJun Kim, JungHwan Jung, Defect-Engineered Three-Dimensional Graphene-Nanotube-Palladium Nanostructures with Ultrahigh Capacitance, Acs Nano. 6(12) (2012) 10562-10570.
DOI: 10.1021/nn3046133
Google Scholar
[10]
Devaraj, S, Munichandraiah N, Effect of Crystallographic Structure of MnO2 on Its Elec-trochemical Capacitance Properties, Journal of Physical Chemistry C. 112(11) (2008) 4406-4417.
DOI: 10.1021/jp7108785
Google Scholar
[11]
C. Z. Yuan, B. Gao, L. F. Shen, S. D. Yang, L. Hao, X. J. Lu, F. Zhang, L. J. Zhang and X. G. Zhang, Hierarchically structured carbon-based composites: Design, synthesis and their application in electrochemical capacitors, Nanoscale. 3 (2011).
DOI: 10.1039/c0nr00423e
Google Scholar
[12]
W. D. Zhang, B. Xu and L. C. Jiang, Functional hybrid materials based on carbon nanotubes and metal oxides. Journal of Materials Chemistry. 20 (2010) 6383-6391.
DOI: 10.1039/b926341a
Google Scholar
[13]
Y.Q. Sun, Q. Wu and G.Q. Shi, Graphene based new energy materials, Energy & Environmental Science. 4 (2011) 1113-1132.
Google Scholar
[14]
Zhu L, Zhang S, Cui Y, One Step Synthesis and Capacitive Performance of Graphene Nanosheets/Mn3O4 Composite, Electrochimica Acta. 89(1) (2013) 18-23.
DOI: 10.1016/j.electacta.2012.10.157
Google Scholar
[15]
Liu C L, Chang K H, Hu C C, Microwave-assisted Hydrothermal Synthesis of Mn3O4/Reduced Graphene Oxide Composites for High Power Supercapacitors, Journal of Power Sources. 217(11) (2012) 184-192.
DOI: 10.1016/j.jpowsour.2012.05.109
Google Scholar
[16]
Yan J, Fan Z, Wei T, Fast and Reversible Surface Redox Reaction of Graphene-MnO2 Composites as Supercapacitor Electrodes. Carbon, 48(13) (2010) 3825-3833.
DOI: 10.1016/j.carbon.2010.06.047
Google Scholar
[17]
Hummers W. S., OffemanR. E., Preparation of graphitic oxide, Journal of American Chemical Society. 80 (1958) 1339-1339.
DOI: 10.1021/ja01539a017
Google Scholar
[18]
Brousse T., Toupin M., Dugas R., Athoue L., Crosnier O., Be ´langer D, Crystalline MnO2 as Possible Alternatives to Amorphous Compounds in Electrochemical Supercapacitors, Journal of The Electrochemical Society. 153 (2006) A2171-A2180.
DOI: 10.1149/1.2352197
Google Scholar
[19]
Shinomiya T., Gupta V., Miura N, Effects of electrochemical-deposition method and microstructure on the capacitive characteristics of nano-sized manganese oxide. Electrochimica Acta. 51 (2006) 4412-4419.
DOI: 10.1016/j.electacta.2005.12.025
Google Scholar
[20]
Beaudrouet E, Salle A L G L, Guyomard D, Nanostructured manganese dioxides: Synthesis and properties as supercapacitor electrode materials, Electrochimica Acta. 54(4) (2009) 1240-1248.
DOI: 10.1016/j.electacta.2008.08.072
Google Scholar
[21]
Liu H, Zhang W, Song H, Tremella-like graphene/polyaniline spherical electrode material for supercapacitors, Electrochimica Acta. 146 (2014) 511-517.
DOI: 10.1016/j.electacta.2014.09.083
Google Scholar
[22]
Jun Yan, Zhuangjun Fan, Tong Wei, Jie Cheng, Bo Shao, KaiWang, Liping Song, Milin Zhang. Carbon nanotube/MnO2 composites synthesized by microwave-assisted method, Journal of Power Sources. 194 (2009) 1202-1207.
DOI: 10.1016/j.jpowsour.2009.06.006
Google Scholar
[23]
Reddy A L M, Shaijumon M M, Gowda S R, Multisegmented Au-MnO2/Carbon Nanotube Hybrid Coaxial Arrays for High-Power Supercapacitor Applications. Journal of Physical Chemistry C. 117(42) (2010) 658-663.
DOI: 10.1021/jp908739q
Google Scholar
[24]
Yan Wang, Zhiqiang Shi,Yi Huang, Yanfeng Ma, Chengyang Wang, Mingming Chen, and Yongsheng Chen, Supercapacitor Devices Based on Graphene Materials, J. Phys. Chem. C. 113 (2009) 13103-13107.
DOI: 10.1021/jp902214f
Google Scholar
[25]
Shu Juan Bao, Chang Ming Li , Chun-Xian Guo, Yan Qiao, Biomolecule-assisted synthesis of cobalt sulfide nanowires for application in supercapacitors, Journal of Power Sources. 180 (2008) 676-681.
DOI: 10.1016/j.jpowsour.2008.01.085
Google Scholar