Microstructure Evolution of Copper by Three Roll Planetary Milling

Article Preview

Abstract:

The microstructure of commercial pure copper TP2 tube by three roll planetary mill processing was investigated. Due to work hardening and subsequent softing by dynamic recrystallization during milling process,the coarse grain structure of the copper transformed to fine grain structure. The grain refinement is achieved along the axial moving in general; in the reducing zone, the sample has a gradient structure along the radial direction; uniform equiaxed grain with size of ~2 μm could be obtained at the outlet. The initiation of dynamic recrystallization occurred in the three roll planetary mill the reduction engineering strain reach ~30%, where some equiaxed grains replaced the elongated grains because of recrystallization.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 279)

Pages:

44-48

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Nakasuji, K. Kuroda, C. Hayashi, ISIJ INT, 31 (2007) 620-27.

Google Scholar

[2] W.L. Zhou, Y. Xu, S.H. Zhang, C.F. Yu, Q. Jiang, J.L. Zhang, CHINA METALFORMING EQUIPMENT & MANUFATURING TECHNOLOGY, 39 (2004) 34-37.

Google Scholar

[3] S.D. Dong, S.Z. Wang, G.C. Duan, CHINA METALFORMING EQUIPMENT & MANUFATURING TECHNOLOGY, 39 (2004) 30-32.

Google Scholar

[4] B. Li, S.H. Zhang, H.Q. Zhang, G.L. Zhang, J MATER ENG PERFORM, 17 (2008) 499-505.

Google Scholar

[5] J.S. Liu, F. Wang, Y.J. Li, TRANSACTIONS OF SHENYANG LIGONG UNIVERSITY, 27 (2008) 61-64.

Google Scholar

[6] D.H. Liu, Y.C. Su, C.P. Deng, Q.P. Hu, Z.Y. Pan, THE CHINESE JOURNAL OF NONFERROUS METALS, 16 (2006) 881-86.

Google Scholar

[7] Y.L. Wang, Y. Liu, J.T. Wang, F.S. Tian, Materials Science Forum, 667-669 (2011) 193-198.

Google Scholar

[8] N. Lugo, N. Llorca, J.M. Cabrera, Z. Horita, MAT SCI ENG A-STRUCT, 477 (2008) 366-71.

Google Scholar

[9] H.J. McQueen, S. Bergerson, Metal Science, 6 (1972) 25-29.

Google Scholar

[10] X. Molodova, G. Gottstein, M. Winning, R.J. Hellmig, Materials Science and Engineering: A, 460–461 (2007) 204-13.

DOI: 10.1016/j.msea.2007.01.042

Google Scholar

[11] X.H. An, S.D. Wu, Z.F. Zhang, R.B. Figueiredo, N. Gao, T.G. Langdon, SCRIPTA MATER, 63 (2010) 560-63.

Google Scholar

[12] D.R. Steinmetz, T. Japel, B. Wietbrock, P. Eisenlohr, I. Gutierrez-Urrutia, A. Saeed-Akbari, T. Hickel, F. Roters, D. Raabe, ACTA MATER, 61 (2013) 494-510.

DOI: 10.1016/j.actamat.2012.09.064

Google Scholar

[13] C.X. Huang, K. Wang, S.D. Wu, Z.F. Zhang, G.Y. Li, S. Li, ACTA MATER, 54 (2006) 655-65.

Google Scholar

[14] Z.N. Mao, R.C. Gu, F. Liu, Y. Liu, X.Z. Liao, J.T. Wang, MAT SCI ENG A-STRUCT, 674 (2016) 186-92.

Google Scholar

[15] T. Konkova, S. Mironov, A. Korznikov, S.L. Semiatin, ACTA MATER, 58 (2010) 5262-73.

Google Scholar

[16] T. Konkova, S. Mironov, A. Korznikov, S.L. Semiatin, SCRIPTA MATER, 63 (2010) 921-24.

DOI: 10.1016/j.scriptamat.2010.07.005

Google Scholar