Effect of Magnetic Field on Solidification Behavior of a MnCu Damping Alloy

Article Preview

Abstract:

Preparation of Mn-Cu based damping alloy ingots coupled with strong magnetic fields shows many interesting phenomena on the solidification microstructure and the crystal lattice. In this study, modified M2052 ingots were prepared under different magnetic fields to investigate the bulk solidification behavior by using optical microscopy, scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction. Metallographic analysis reveals that the deflection angle of the primary dendrite arm increases with the increase of magnetic field strength. The distribution of chemical composition characterized by X-ray Fluorescence discloses that Mn is enriched while Cu is depleted along the circumferential surface side, and the variation tendency changes from almost a level to a sloping line under applied magnetic field. High magnetic field have altered the orientation of the γ-Mn dendrites from (200) to (111), and the coupling mechanism of alloy solidification with strong magnetic field is discussed based on the experimental results.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 279)

Pages:

35-43

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F.X. Yin, Y. Ohsawa, A. Sato, K. Kawahara, Phase decomposition of the γ phase in a Mn-30 at.% Cu alloy during aging, Acta Mater. 48 (2000) 1273-1282.

DOI: 10.1016/s1359-6454(99)00419-x

Google Scholar

[2] Q. C, Tian, F. X. Yin, T. Sakaguchi, K Nagai, Reverse transformation behavior of a prestrained MnCu alloy, Acta Mater. 54 (2006) 1805-1813.

DOI: 10.1016/j.actamat.2005.12.007

Google Scholar

[3] Q. C, Tian, F. X. Yin, T. Sakaguchi, K Nagai, Internal friction behavior of twin boundaries in tensile-deformed Mn-15at.% Cu alloy, Mater. Sci. Eng. A. 442 (2006) 433-438.

DOI: 10.1016/j.msea.2006.04.135

Google Scholar

[4] F.X. Yin, I. Satoshi, S. Takuya, N. Kotobu, The improved damping behavior of Mn-Cu high damping alloy obtained by solidification process control, Prog. Phys. 26 (2006) 323-331.

Google Scholar

[5] Z.Y. Zhong, W.B. Liu, N. Li, J.Z. Yan, J.W. Xie, D. Li, Y. Liu, X.C. Zhao, S.Q. Shi, Mn segregation dependence of damping capacity of as-cast M2052 alloy, Mater. Sci. Eng. A. 660 (2016) 97-101.

DOI: 10.1016/j.msea.2016.02.084

Google Scholar

[6] W.B. Liu, N. Li, Z.Y. Zhong, J.Z. Yan, D. Li, Y. Liu, X.C. Zhao, S.Q. Shi, Novel cast-aged MnCuNiFeZnAl alloy with good damping capacity and high usage temperature toward engineering application, Mater. Des. 106 (2016) 45-50.

DOI: 10.1016/j.matdes.2016.05.098

Google Scholar

[7] X Li, Z Ren, Y Fautrelle, A Gagnoud, Y Zhang and C Esling. Degeneration of columnar dendrites during directional solidification under a high magnetic field. Scripta Mater., 60 (2009) 443-446.

DOI: 10.1016/j.scriptamat.2008.11.036

Google Scholar

[8] K. Biswas, R. Hermann, H. Wendrock, J. Priede, G. Gerbeth, B. Buechner, Effect of melt convection on the secondary dendritic arm spacing in peritectic Nd-Fe-B alloy, J. Alloy. Compd. 480 (2009) 295-298.

DOI: 10.1016/j.jallcom.2009.01.106

Google Scholar

[9] T. Liu, Q. Wang, H.F. Zhang, K. Wang, X.J. Pang, J.C. He, Effects of high magnetic fields on the microstructures and grain boundaries in binary Al-Li alloy, J. Alloy. Compd. 469 (2009) 258-263.

DOI: 10.1016/j.jallcom.2008.01.085

Google Scholar

[10] C.Y. Ban, Q.X. Ba, J.Z. Cui, G.Y. Zeng, Effect of magnetic field during solidification on microstructure of three Al alloys, J. Northeast. Univ. 23 (2002) 779-782.

Google Scholar

[11] D.J. Ma, X. Li, L. Hou, Y. Fautrelle, Z.M. Ren, K. Deng, B. Saadi, F. Debray, Influences of strong magnetic field on interdiffusion behavior between Zn and Cu and dendrite growth, Mater. Lett. 106 (2013) 313-318.

DOI: 10.1016/j.matlet.2013.05.069

Google Scholar

[12] X. Li, D.F. Du, A Gagnoud, Z.M. Ren, Y. Fautrelle, R. Moreau, Effect of multi-scale thermoelectric magnetic convection on solidification microstructure in directionally solidified Al-Si alloys under a transverse magnetic field, Metall. Mater. Trans. A. 45 (2014).

DOI: 10.1007/s11661-014-2496-6

Google Scholar

[13] J.W. Xie, W.B. Liu, N. Li, J.Z. Yan, Z.Y. Zhong, Y. Liu, X.C. Zhao, Effect of dendritic segregation on the damping property of MnCu alloy, J. Funct. Mater. 46 (2015) 13087-13090 and 13094.

Google Scholar

[14] D.F. Du, L. Hou, Annie Gagnoud, Z.M. Ren, Yves Fautrelle, G.H. Cao and X. Li. Effect of an axial high magnetic field on Sn dendrite morphology of Pb-Sn alloys during directional solidification, J. Alloys Compd. 588 (2014) 190-198.

DOI: 10.1016/j.jallcom.2013.11.011

Google Scholar

[15] Q.Y. Li. Influence of the static magnetic field on the directional solidification of Ni-Mn-Ga alloy, Shanghai University. (2014).

Google Scholar

[16] H. Uchishiba. Antiferromagnetism of γ-phase manganese alloys containing Ni, Zn, Ga and Ge, J. Phys. Soc. Jpn. 31 (1971) 436-440.

DOI: 10.1143/jpsj.31.436

Google Scholar