Non-Destructive Criteria of Plastic Deformation and Fracture in Structural Metals

Article Preview

Abstract:

The investigations of ultrasound Rayleigh wave parameters changing depending on localized plastic strain in AlCu4MgSi alloy and austenitic stainless steel AISI 304 are presented in this paper. Measurements of the ultrasound parameters and localized strain bands motion were carried out in-situ during the tensile tests of the specimens at the constant rate and room temperature. It has been found that the measurement of ultrasound velocity allows detecting the initiation of a localized strain band and its location relative to the acoustic measurement area independently of the deformation mechanism.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 279)

Pages:

16-20

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. Lüders, Über die äusserung der elasticität an stahlartigen eisenstäben und stahlstäben, und über eine beim biegen solcher stäbe beobachtete molecularbewegung, Dinglers Polytech. J. 155 (1860) 18 -22.

Google Scholar

[2] S. Barannikova, Localization of stretching strain in doped carbon gamma-Fe single crystals, Tech. Physics. 45 (2000) 1368-1370.

DOI: 10.1134/1.1318982

Google Scholar

[3] L.B Zuev, V.V. Gorbatenko, On the activity of deforming medium, AIP Conf. Proc. 1783 (2016) 020238.

Google Scholar

[4] L.B Zuev, Regularities of the localized plastic flow viewed as consequences of elastoplastic invariant of strain, Met.Nov. Tek. 38 (2016) 1335-1349.

Google Scholar

[5] D. Orlova, S. Barannikova, L. Zuev, On the kinetics of localized plasticity domains emergent at the pre-failure stage of deformation process, AIP Conf. Proc. 1783, (2016) 020168.

DOI: 10.1063/1.4966461

Google Scholar

[6] H. Ogi, N. Suzuki, M. Hirao, Noncontact ultrasonic spectroscopy on deforming polycrystalline copper: Dislocation damping and acoustoelasticity, Metall. Mater. Trans A. 29 (1998) 2987–2993.

DOI: 10.1007/s11661-998-0206-y

Google Scholar

[7] S. Barannikova, A. Lunev, Yu. Li, L. Zuev, Use of acoustic parameter measurements for evaluating the reliability criteria of machine parts and metalwork, Key Eng. Mater. 743 (2017) 486-489.

DOI: 10.4028/www.scientific.net/kem.743.486

Google Scholar

[8] A. Granato, K. Lücke, Theory of mechanical damping due to dislocations, J Appl. Phys. 27 (1956) 583–593.

DOI: 10.1063/1.1722436

Google Scholar

[9] M. Kobayashi, Ultrasonic nondestructive evaluation of microstructural changes of solid materials under plastic deformation—Part I. Theory, Int J Plast. 14 (1998) 511–522.

DOI: 10.1016/s0749-6419(98)00005-9

Google Scholar

[10] A. Maurel, V. Pagneux, F. Barra, F. Lund, Ultrasound as a probe of plasticity? The interaction of elastic waves with dislocations, Int. J. Bifurc. Chaos. 19 (2009) 2765–2781.

DOI: 10.1142/s0218127409024475

Google Scholar

[11] L. B. Zuev, L. B. Semukhin, A. G. Lunev, The use of measurements of the velocity of ultrasound to determine the stress-strain state of metal articles, Meas Tech. (2010) 53 439–443.

DOI: 10.1007/s11018-010-9522-x

Google Scholar

[12] L. B. Zuev, V. V. Gorbatenko, K. V. Pavlichev, Elaboration of speckle photography techniques for plastic flow analyses, Meas. Sci. Technol. 21 (2010) 1-5.

DOI: 10.1088/0957-0233/21/5/054014

Google Scholar

[13] J. H. Hollomon, Tensile deformation, Trans. AIME. 162 (1945) 268–277.

Google Scholar

[14] N. Ranc, D. Wagner, Experimental study by pyrometry of Portevin–Le Châtelier plastic instabilities—Type A to type B transition, Mater. Sci. Eng. A. 474 (2008)188–196.

DOI: 10.1016/j.msea.2007.04.012

Google Scholar

[15] A. Benallal, T. Berstad, T. Borvik, O.S. Hopperstad, I. Koutiri, R Nogueira de Codes, An experimental and numerical investigation of the behaviour of AA5083 aluminium alloy in presence of the Portevin–Le Chatelier effect, Int. J. Plasticity 4 (2008).

DOI: 10.1016/j.ijplas.2008.03.008

Google Scholar

[16] E. Orowan, The creep of metals, J. West Scotland Iron Steel Inst. 54 (1946) 45-96.

Google Scholar

[17] P. G. McCormick, Y. Estrin, Transient flow behaviour associated with dynamic strain ageing, Scripta Metall. 23 (1989) 1231-1234.

DOI: 10.1016/0036-9748(89)90332-3

Google Scholar

[18] M. Smaga , F. Walther, D. Eifler, EiflerDeformation-induced martensitic transformation in metastable austenitic steels, Mater. Sci. Eng. A. 483–484 (2008) 394–397.

DOI: 10.1016/j.msea.2006.09.140

Google Scholar

[19] A. Van den Beukel, Theory of effect of dynamic strain aging on mechanical-properties, Phys. Status Solidi A. 30 (1975) 197–206.

DOI: 10.1002/pssa.2210300120

Google Scholar

[20] B. Sun, N. Vanderesse, F. Fazeli, C. Scott, J. Chen, P. Bocher, M. Jahazi, S. Yue, Discontinuous strain-induced martensite transformation related to the Portevin-Le Chatelier effect in a medium manganese steel, Scripta Mater. 133 (2017) 9-13.

DOI: 10.1016/j.scriptamat.2017.01.022

Google Scholar

[21] S.A. Barannikova, A.V. Bochkareva, A.G. Lunev, G.V. Shlyakhova and L.B. Zuev, Changes in ultra-. sound velocity in the plastic deformation of high-chro-. mium steel, Steel Transl. 46 (2016) 552–557.

DOI: 10.3103/s0967091216080039

Google Scholar