Radiation Induced Grafting of Acrylic Acid on to Polyaniline Nanofiber

Article Preview

Abstract:

This study aims to explore modification of polyaniline nanofiber through grafting polymerization to increase its solubility and processability for application in aqueous environment. Grafting via electron beam radiation procedure is extremely productive in terms of time consumption and environmental friendliness. In this work, acrylic acid was grafted on to polyaniline nanofiber using electron beam irradiation. The influence of altering the electron beam power from 2-3 MeV, radiation dosage from 5-25 kGy, acrylic acid concentration from 10-100% and soaking time from 2-24 hours during graft polymerization were studied over the grafting percentage (%G). Grafting parameter was determined by weight changes before and after grafting procedure. Grafted polyaniline is characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA). Formation of new peak at 1700 cm-1 for FTIR spectroscopy analysis of grafted polyaniline confirmed grafting has taken place during irradiation.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 280)

Pages:

294-300

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R.F. Joel: Polymer Science and Technology. Prentice Hall. (2003).

Google Scholar

[2] J. Biswal, V. Kumarn, Y.K. Bhardwaj, N.K. Goel, K. Dubey, C.V. Chaudhari and S. Sabharwal: Radiat. Phys. Chem. Vol. 76, (2007), pp.1624-1630.

Google Scholar

[3] Y. Hong, S. Hwang, D.S. Yoo and J. Yang: Sens. Actuators. B Chem. 218 (2015) 31-36.

Google Scholar

[4] R. Shamagsumova, A. Porfireva, V. Stepanova, Y. Osin, G. Evtugyn and T. Hianik: Sens. Actuators. B Chem. Vol. 220 (2015), pp.573-582.

DOI: 10.1016/j.snb.2015.05.076

Google Scholar

[5] C. Yang and D. Li: Mater. Lett. Vol. 155 (2015), pp.78-81.

Google Scholar

[6] R. Karthik and S. Meenakshi: Int. J. Biol. Macromol. Vol. 67 (2014), pp.210-219.

Google Scholar

[7] E. Igberase, P. Osifo and A. Ofomaja: J. Environ. Chem. Eng. Vol. 21 (2014), pp.362-369.

Google Scholar

[8] E. Pereira, A.L. Antonio, A. Rafalski, J.C.M. Barreira, L. Barros and M.B.P.P. Oliveira: LWT-Food. Sci. Technol. Vol. 82 (2017), pp.386-395.

Google Scholar

[9] J. Lu, D. Wei, R. Wang, X. Sui and J. Yin: Vacuum Vol. 143 (2017), pp.283-287.

Google Scholar

[10] F. Dong, S. Maganty, S.J. Meschter, S. Nozaki, T. Ohshima, T. Makino and J. Cho: Polym. Degrad. Stabil. Vol. 141 (2017), pp.45-53.

Google Scholar

[11] P. Xue, Y. Zhao, C. Wen, S. Cheng and S. Lin: Food Chem. Vol. 233 (2017), pp.467-475.

Google Scholar

[12] M.M. Nasef, S.A. Gürsel, D. Karabelli and O. Güven: Prog. Polym. Sci. Vol. 63 (2016), pp.1-41.

Google Scholar

[13] A. Athawale, M.V. Kulkarni and V.V. Chabukswar: Mater. Chem. Phys. Vol. 73 (2002), pp.106-110.

Google Scholar

[14] E. Coşkun, .SM. Martínez-Ramírez, W. Antunez-Flores, C.A. Hernández-Escobar and E.A. Zaragoza-Contreras: Synthetic. Met. Vol. 162 (2012), pp.344-351.

DOI: 10.1016/j.synthmet.2011.12.016

Google Scholar

[15] A. Tiwari and V. Singh: Carbohyd. Polym. Vol. 74 (2008), pp.427-434.

Google Scholar

[16] M. Barsbay and O. Gven: Polym-United Kingdom, Vol. 54 (2013), pp.4838-4848.

Google Scholar

[17] S. Bhadra and D. Khastgir: Polym. Degrad. Stabil., Vol. 92 (2007), pp.1824-1832.

Google Scholar

[18] S. Bhadra and D. Khastgir Polym. Degrad. Stabil. Vol. 93 (2008), pp.1094-1099.

Google Scholar

[19] M.B. El-Arnaouty, A.M. Abdel Ghaffar and H.M. El Shafey: J. Appl. Polym. Sci. Vol. 107 (2008), pp.744-754.

DOI: 10.1002/app.27099

Google Scholar

[20] D.K. Mandal, H. Bhunia, P.K. Bajpai, C.V. Chaudhari, K.A. Dubey and L. Varshney: Radiat. Phys. Chem. Vol. 123 (2016), pp.37-45.

Google Scholar

[21] C.H. Chen: J. Appl. Polym. Sci. Vol. 89 (2003), pp.2142-2148.

Google Scholar

[22] S. Pandey and J. Ramontja: Int. J. Biol. Macromol. Vol. 89 (2016), pp.89-98.

Google Scholar

[23] M. Takigami, A. Hiroki, N. Nagasawa, T. Kasahara, S. Takigami. and M. Tamada : Trans. Mat. Res. Soc. Vol. 34 (2009), p.391–394.

DOI: 10.14723/tmrsj.34.391

Google Scholar

[24] R.Bagheri, F. Naimian and N. Sheikh: Radiat. Phys. Chem. Vol. 49 (1997), pp.497-501.

Google Scholar

[25] S. Benamer, M. Mahlous, D. Tahtat, A. Nacer-Khodja, M. Arabi, H. Lounici and N. Mameri: Radiat. Phys. Chem. Vol. 80 (2011), pp.1391-1397.

DOI: 10.1016/j.radphyschem.2011.06.013

Google Scholar

[26] G.R. Bardajee, A. Pourjavadi, N. Sheikh and M.S. Amini-Fazla Radiat. Phys. Chem. Vol. 77 (2008), pp.131-137.

Google Scholar

[27] J.L. Garnett: Radiat. Phys. Chem. Vol. 14 (1977), pp.79-99.

Google Scholar