[1]
N. Salehifar, A. Nikfarjam, Improvement the visible light photocatalytic activity of gold nanoparticle, Co2O3 and nitrogen doped TiO2 nanofibers, Mater. Lett. 188 (2016) 59-62.
DOI: 10.1016/j.matlet.2016.10.095
Google Scholar
[2]
R. Mnassri, N.C. Boudjada, A. Cheikhrouhou, Nearly constant magnetic entropy change involving the enhancement of refrigerant capacity in (La0.6Ba0.2Sr0.2MnO3)1-x/(Co2O3)x composite, Ceram. Int. 42 (2016) 7447-7454.
DOI: 10.1016/j.ceramint.2016.01.149
Google Scholar
[3]
X. Wang, X. Jiang, H. Jiang, J. Jiang, Effects of B-site Co2O3 doping on microstructure and electrical properties of Na0.25K0.25Bi2.5Nb2O9 ceramics, J. Alloy. Compd. 646 (2015) 528-531.
DOI: 10.1016/j.jallcom.2015.05.168
Google Scholar
[4]
W.D. Yang, Y.G. Wang, Effects of TiO2 and Co2O3 combination additions on the elemental distribution and electromagnetic properties of Mn-Zn power ferrites, J. Magnet. Magnet. Mater. 384 (2015) 13-17.
DOI: 10.1016/j.jmmm.2015.02.020
Google Scholar
[5]
R. Laopaiboon, C. Bootjomchai, Glass structure responses to gamma irradiation using infrared absorption spectroscopy and ultrasonic techniques: A comparative study between Co2O3 and Fe2O3, Appl. Radiat. Isotop. 89 (2014) 42-46.
DOI: 10.1016/j.apradiso.2014.02.008
Google Scholar
[6]
W.J. Wu, M. Chen, J. Li, Y.C. Ding, C,Q. Liu, Structure and asymmetric ferroelectric loops of (K0.48Na0.52)NbO3-1mol%CuO-xmol%Co2O3 ceramics with low-temperature sintering, J. Alloy. Compd. 670 (2016) 128-134.
DOI: 10.1016/j.jallcom.2016.02.001
Google Scholar
[7]
A. Poulia, P.M. Sakkas, D.G. Kanellopoulou, G. Sourkouni, C. Legros, Chr. Argirusis, Preparation of metal–ceramic composites by sonochemical synthesis of metallic nano-particles and in-situ decoration on ceramic powders, Ultrason. Sonochem. 31 (2016).
DOI: 10.1016/j.ultsonch.2016.01.031
Google Scholar
[8]
J.H Xu, K. Bandyopadhyay, D. Jung, Experimental investigation on the correlation between nano-fluid characteristics and thermal properties of Al2O3 nano-particles dispersed in ethylene glycol-water mixture, Int. J. Heat Mass Trans. 94 (2016).
DOI: 10.1016/j.ijheatmasstransfer.2015.11.056
Google Scholar
[9]
J. Ma, S. Zhang, W. Liu, Y. Zhao, Facile preparation of Co3O4 nanocrystals via a solvothermal process directly from common Co2O3 powder, J. Alloy. Compd. 490 (2010) 647-651.
DOI: 10.1016/j.jallcom.2009.10.126
Google Scholar
[10]
B. Sarma, R.S. Ray, S.K. Mohanty, M. Misra, Synergistic enhancement in the capacitance of nickel and cobalt based mixed oxide supercapacitor prepared by electrodeposition, Appl. Surf. Sci. 300 (2014) 29-36.
DOI: 10.1016/j.apsusc.2014.01.186
Google Scholar
[11]
Y. Zong, H.N. Xin, J,R. Zhang, X.H. Li, J. Feng, X. Deng, One-pot, template- and surfactant-free solvothermal synthesis of high-crystalline Fe3O4 nanostructures with adjustable morphologies and high magnetization, J. Magnet. Magnet. Mater. 423 (2017).
DOI: 10.1016/j.jmmm.2016.09.132
Google Scholar
[12]
Y. Li, X.H. Li, Z.X. Wang, H.J Guo, T, Li, Distinct impact of cobalt salt type on the morphology, microstructure, and electrochemical properties of Co3O4 synthesized by ultrasonic spray pyrolysis, J. Alloy. Compd. 696 (2017) 836-843.
DOI: 10.1016/j.jallcom.2016.12.038
Google Scholar
[13]
J.G. Song, F. Wang, M.H. Xu, Effect of synthesis conditions on the particle size and morphology of YAG powder, J. Ceram. Process. Res. 13 (2012) 154-157.
Google Scholar
[14]
Z.D. Nan, Q.Z. Jiao, Z.C. Tan, L. X. Sun, Investigation of thermodynamic properties of Co2O3 powder, Thermochim. Acta. 404 (2003) 245-249.
DOI: 10.1016/s0040-6031(03)00179-5
Google Scholar
[15]
R M. Laine, A new YAG phase produced by liquid-feed flame spray pyrolysis, Adv. Mater., 17 (2005) 830-833.
DOI: 10.1002/adma.200401001
Google Scholar