Effect of Synthetic Technology on the Properties of Co2O3 Powder

Article Preview

Abstract:

Ultrafine Co2O3 powder was prepared via hydrothermal synthesis. The effect of technology on the performance of the superfine Co2O3 powders was investigated, and the hydrothermal parameters in preparing Co2O3 were gradually improved. In addition, the morphology and grain size of the Co2O3 powder were analyzed by FESEM. Results show that reducing the salt–alkali molar ratio resulted in more uniform Co2O3 powder and smaller particles, with average particle size of approximately 40 nm. Reaction time displayed little effect on the Co2O3 powder, but the particle size decreased with the reaction time. The concentration of salt solution remarkably affected the morphology of the Co2O3 powder. Lower concentration resulted in smaller particle aggregation and particle size.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 281)

Pages:

46-51

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. Salehifar, A. Nikfarjam, Improvement the visible light photocatalytic activity of gold nanoparticle, Co2O3 and nitrogen doped TiO2 nanofibers, Mater. Lett. 188 (2016) 59-62.

DOI: 10.1016/j.matlet.2016.10.095

Google Scholar

[2] R. Mnassri, N.C. Boudjada, A. Cheikhrouhou, Nearly constant magnetic entropy change involving the enhancement of refrigerant capacity in (La0.6Ba0.2Sr0.2MnO3)1-x/(Co2O3)x composite, Ceram. Int. 42 (2016) 7447-7454.

DOI: 10.1016/j.ceramint.2016.01.149

Google Scholar

[3] X. Wang, X. Jiang, H. Jiang, J. Jiang, Effects of B-site Co2O3 doping on microstructure and electrical properties of Na0.25K0.25Bi2.5Nb2O9 ceramics, J. Alloy. Compd. 646 (2015) 528-531.

DOI: 10.1016/j.jallcom.2015.05.168

Google Scholar

[4] W.D. Yang, Y.G. Wang, Effects of TiO2 and Co2O3 combination additions on the elemental distribution and electromagnetic properties of Mn-Zn power ferrites, J. Magnet. Magnet. Mater. 384 (2015) 13-17.

DOI: 10.1016/j.jmmm.2015.02.020

Google Scholar

[5] R. Laopaiboon, C. Bootjomchai, Glass structure responses to gamma irradiation using infrared absorption spectroscopy and ultrasonic techniques: A comparative study between Co2O3 and Fe2O3, Appl. Radiat. Isotop. 89 (2014) 42-46.

DOI: 10.1016/j.apradiso.2014.02.008

Google Scholar

[6] W.J. Wu, M. Chen, J. Li, Y.C. Ding, C,Q. Liu, Structure and asymmetric ferroelectric loops of (K0.48Na0.52)NbO3-1mol%CuO-xmol%Co2O3 ceramics with low-temperature sintering, J. Alloy. Compd. 670 (2016) 128-134.

DOI: 10.1016/j.jallcom.2016.02.001

Google Scholar

[7] A. Poulia, P.M. Sakkas, D.G. Kanellopoulou, G. Sourkouni, C. Legros, Chr. Argirusis, Preparation of metal–ceramic composites by sonochemical synthesis of metallic nano-particles and in-situ decoration on ceramic powders, Ultrason. Sonochem. 31 (2016).

DOI: 10.1016/j.ultsonch.2016.01.031

Google Scholar

[8] J.H Xu, K. Bandyopadhyay, D. Jung, Experimental investigation on the correlation between nano-fluid characteristics and thermal properties of Al2O3 nano-particles dispersed in ethylene glycol-water mixture, Int. J. Heat Mass Trans. 94 (2016).

DOI: 10.1016/j.ijheatmasstransfer.2015.11.056

Google Scholar

[9] J. Ma, S. Zhang, W. Liu, Y. Zhao, Facile preparation of Co3O4 nanocrystals via a solvothermal process directly from common Co2O3 powder, J. Alloy. Compd. 490 (2010) 647-651.

DOI: 10.1016/j.jallcom.2009.10.126

Google Scholar

[10] B. Sarma, R.S. Ray, S.K. Mohanty, M. Misra, Synergistic enhancement in the capacitance of nickel and cobalt based mixed oxide supercapacitor prepared by electrodeposition, Appl. Surf. Sci. 300 (2014) 29-36.

DOI: 10.1016/j.apsusc.2014.01.186

Google Scholar

[11] Y. Zong, H.N. Xin, J,R. Zhang, X.H. Li, J. Feng, X. Deng, One-pot, template- and surfactant-free solvothermal synthesis of high-crystalline Fe3O4 nanostructures with adjustable morphologies and high magnetization, J. Magnet. Magnet. Mater. 423 (2017).

DOI: 10.1016/j.jmmm.2016.09.132

Google Scholar

[12] Y. Li, X.H. Li, Z.X. Wang, H.J Guo, T, Li, Distinct impact of cobalt salt type on the morphology, microstructure, and electrochemical properties of Co3O4 synthesized by ultrasonic spray pyrolysis, J. Alloy. Compd. 696 (2017) 836-843.

DOI: 10.1016/j.jallcom.2016.12.038

Google Scholar

[13] J.G. Song, F. Wang, M.H. Xu, Effect of synthesis conditions on the particle size and morphology of YAG powder, J. Ceram. Process. Res. 13 (2012) 154-157.

Google Scholar

[14] Z.D. Nan, Q.Z. Jiao, Z.C. Tan, L. X. Sun, Investigation of thermodynamic properties of Co2O3 powder, Thermochim. Acta. 404 (2003) 245-249.

DOI: 10.1016/s0040-6031(03)00179-5

Google Scholar

[15] R M. Laine, A new YAG phase produced by liquid-feed flame spray pyrolysis, Adv. Mater., 17 (2005) 830-833.

DOI: 10.1002/adma.200401001

Google Scholar