Oxidation Behavior of β-Sialon Ultrafine Powders Prepared by the Combined Sol-Gel and Microwave Carbothermal Reduction Nitridation Method

Article Preview

Abstract:

Ultrafine powders of β-Sialon were prepared by the combined sol-gel and microwave carbothermal reduction nitridation method, and their oxidation process was studied by a non-isothermal thermogravimetry method. The results indicated that two different mechanism functions respectively corresponded to the initial and final oxidation stages. The reverse Jander equation with activation energy of 240.5 kJ/mol and the Avrami-Erofeev equation with activation energy of 410.7 kJ/mol were respectively identified as the most probable mechanism function for the initial and final oxidation stages in the temperature range of 1423-1623 K.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 281)

Pages:

34-39

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Zhao, P. Y. Wang, J. L.Yu, J. Zhang, A mechanistic study on the synthesis of β-Sialon whiskers from coal fly ash, Mater. Res. Bull. 65 (2015) 47-52.

DOI: 10.1016/j.materresbull.2015.01.039

Google Scholar

[2] A. R. Bahramian, M. Kokabi, Carbonitriding synthesis of β-SiAlON nanopowder from kaolinite–polyacrylamide precursor, Appl. Clay Sci. 52 (2011) 407-413.

DOI: 10.1016/j.clay.2011.04.012

Google Scholar

[3] X. M. Hou, C. S. Yue, A. K. Singh, M. Zhang, K. C. Chou, Morphological development and oxidation of elongated β-SiAlON material, Corros. Sci. 53 (2011) 2051–(2057).

DOI: 10.1016/j.corsci.2011.01.056

Google Scholar

[4] J. Rychlý, L. Matisová-Rychlá, K. Csomorová, I. Janigová, M. Schilling, T. Learner, Non-isothermal thermogravimetry, differential scanning calorimetry and chemiluminescence in degradation of polyethylene, polypropylene, polystyrene and poly(methyl methacrylate), Polym. Degrad. Stabil. 96 (2011).

DOI: 10.1016/j.polymdegradstab.2011.05.020

Google Scholar

[5] P. Z. Gao, H. N. Xiao, H. J. Wang, Z. H. Jin, A study on the oxidation kinetics and mechanism of three-dimensional (3D) carbon fiber braid coated by gradient SiC, Mater. Chem. Phys. 93 (2005) 164–169.

DOI: 10.1016/j.matchemphys.2005.03.003

Google Scholar

[6] H. L. Friedman, Kinetics and gaseous products of thermal decomposition of polymers, Journal of Macromolecular Science, Pure Appl. Chem. 41 (1967) 57-79.

Google Scholar

[7] B. Li, G. Chen, H. Zhang, C. D. Sheng, Development of non-isothermal TGA–DSC for kinetics analysis of low temperature coal oxidation prior to ignition, Fuel, 118 (2014) 385-391.

DOI: 10.1016/j.fuel.2013.11.011

Google Scholar

[8] J. H. Sharp, S. A. Wendworth, Kinetic analysis of thermogravimetric data, Anal. Chem. 41 (1969) 2060−(2062).

Google Scholar

[9] F. L. Li, F. Fu, L. L. Lu, H. J. Zhang, S. W. Zhang, Preparation and artificial neural networks analysis of ultrafine β-Sialon powders by microwave-assisted carbothermal reduction nitridation of sol–gel derived powder precursors, Adv. Powder Technol. 26 (2015).

DOI: 10.1016/j.apt.2015.07.018

Google Scholar

[10] S. Sarkar, P. K. Das, S. Bysakh, Effect of heat treatment on morphology and thermal decomposition kinetics of multiwalled carbon nanotubes, Mater. Chem. Phys. 125 (2011) 161–167.

DOI: 10.1016/j.matchemphys.2010.08.088

Google Scholar

[11] S. Hasani, M. Panjepour, M. Shamanian, Non-isothermal kinetic analysis of oxidation of pure aluminum powder particles, Oxid. Met. 81 (2014) 299-313.

DOI: 10.1007/s11085-013-9413-z

Google Scholar