Research on the Densification Process of the Mechanically-Alloyed Amorphous 2Si-B-3C-N Powder

Article Preview

Abstract:

A mixture of the commercially available cubic silicon powder, hexagonal boron nitride powder and graphite powder was mechanically alloyed to prepare amorphous 2Si-B-3C-N composite powder. The amorphous powder was heated up to 1900°C in nitrogen, with a heating rate of 20°C/min and under a pressure of 80 MPa. Careful investigation was carried out on the densification curve, the microstructure and the mechanical properties of the prepared ceramics. Results show that the amorphous 2Si-B-3C-N powder mainly consists of near-spherical agglomerates, with an average size of 3.5±2.4 micrometers. When the amorphous powder was hot pressed, the densification process mainly included three stages, the denser packing of powder particles with the help of axial pressure, the initial sintering at about 1500-1800°C, and the rapid sintering at temperatures approximately higher than 1830°C. When the 2Si-B-3C-N ceramic was hot pressed at 1900°C for 10-30 mins, it exhibited large volume shrinkage, noticeable reduction of pores, and significantly improvement of density and mechanical properties. The applied high temperature and large pressure may give rise to severe plastic deformation, viscous flow and creep of powder particles, which greatly contribute to the rapid densification of the amorphous 2Si-B-3C-N powder.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 281)

Pages:

15-21

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Muller, A. Zern, P. Gerstel, J. Bill, F. Aldinger, Boron-modified poly(propenylsilazane)- derived Si-B-C-N ceramics: preparation and high temperature properties, J. Eur. Ceram. Soc. 22 (2002) 1631-1643.

DOI: 10.1016/s0955-2219(01)00480-0

Google Scholar

[2] V.M. Vishnyakov, A.P. Ehiasarian, V.V. Vishnyakov, P. Hovsepian, J.S. Colligon, Amorphous boron containing silicon carbo-nitrides created by ion sputtering, Surf. Coat. Tech. 206 (2011) 149-154.

DOI: 10.1016/j.surfcoat.2011.07.002

Google Scholar

[3] Y. Tang, J. Wang, X.D. Li, W.H. Li, H. Wang, X.Z. Wang, Thermal stability of polymer derived SiBNC ceramics, Ceram. Int. 35 (2009) 2871-2876.

DOI: 10.1016/j.ceramint.2009.03.043

Google Scholar

[4] R. Kumar, Y. Cai, P. Gerstel, G. Rixecker, F. Aldinger, Processing, crystallization and characterization of polymer derived nano-crystalline Si-B-C-N ceramics, J. Mater. Sci. 41 (2006) 7088-7095.

DOI: 10.1007/s10853-006-0934-6

Google Scholar

[5] Y. Chen, X. Yang, Y. Cao, Z. Gan, L. An, Quantitative study on structural evolutions and associated energetics in polysilazane-derived amorphous silicon carbonitride ceramics, Acta. Mater. 72 (2014) 22-31.

DOI: 10.1016/j.actamat.2014.03.049

Google Scholar

[6] R. Riedel, A. Kienzle, W. Dressler, L. Ruwisch, J. Bill, F. Aldinger, A silicoboron carbonitride ceramic stable to 2,000oC, Nature 382 (1996) 796-798.

DOI: 10.1038/382796a0

Google Scholar

[7] M. Weinmann, J. Schuhmacher, H. Kummer, S. Prinz, J.Q. Peng, H.J. Seifert, M. Christ, K. Muller, J. Bill, F. Aldinger, Synthesis and thermal behavior of novel Si-B-C-N ceramic precursors, Chem. Mater. 12 (2000) 623-632.

DOI: 10.1021/cm9910299

Google Scholar

[8] M. Chen, H. Qiu, W. Xie, H. Guan, Oxidation behavior of Si-B-C-N multiphase ceramic, 7th Annual Meeting on Testing and Evaluation of Advanced Materials (TEIM 2016), Key Eng. Mater. 726 (2017) 148-152.

DOI: 10.4028/www.scientific.net/kem.726.148

Google Scholar

[9] J. Houska, J. Vlcek, S. Potocky, V. Perina, Influence of substrate bias voltage on structure and properties of hard Si-B-C-N films prepared by reactive magnetron sputtering, Diam. Relat. Mater. 16 (2007) 29-36.

DOI: 10.1016/j.diamond.2006.03.012

Google Scholar

[10] J. Cizek, J. Vlcek, S. Potocky, J. Houska, Z. Soukup, J. Kalas, P. Jedrzejowski, J.E. Klemberg-Sapieha, L. Martinu, Mechanical and optical properties of quaternary Si-B-C-N films prepared by reactive magnetron sputtering, Thin Solid Films 516 (2008).

DOI: 10.1016/j.tsf.2007.12.156

Google Scholar

[11] S. Bernard, M. Weinmann, P. Gerstel, P. Miele, F. Aldinger, Boron-modified polysilazane as a novel single-source precursor for SiBCN ceramic fibers: synthesis melt-sinning, curing and ceramic conversion, J. Mater. Chem. 15 (2005) 289-299.

DOI: 10.1039/b408295h

Google Scholar

[12] M. Chen, H. Qiu, W. Xie, Preparation and properties of SiC/Si-B-C-N ceramic composites, 9th China International Conference on High-Performance Ceramics (CICC 2015), Key Eng. Mater. 697 (2016) 489-493.

DOI: 10.4028/www.scientific.net/kem.697.489

Google Scholar

[13] J.Y. Wang, Z.H. Yang, X.M. Duan, D.C. Jia, Y. Zhou, Microstructure and mechanical properties of SiCf/SiBCN ceramic matrix composites, J. Adv. Ceram. 4 (2015) 31-38.

DOI: 10.1007/s40145-015-0128-2

Google Scholar

[14] S.H. Lee, M. Weinmann, F. Aldinger, Processing and properties of C/Si-B-C-N fiber-reinforced ceramic matrix composites prepared by precursor impregnation and pyrolysis, Acta. Mater. 56 (2008) 1529-1538.

DOI: 10.1016/j.actamat.2007.12.001

Google Scholar

[15] M.A. Rooke, P.M.A. Sherwood, Surface studies of potentially oxidation protective Si-B-N-C films for carbon fibers, Chem. Mater. 9 (1997) 285-296.

DOI: 10.1021/cm960365b

Google Scholar

[16] Z. Feng, Z. Guo, B. Lu, Y. Zhang, Preparation and thermal cycling resistance of SiBCN(O) coating, 8th International Conference on High-Performance Ceramics (CICC 2013), Key Eng. Mater. 602-603 (2014) 393-396.

DOI: 10.4028/www.scientific.net/kem.602-603.393

Google Scholar

[17] Z.H. Yang, Y. Zhou, D.C. Ha, Q.C. Meng, Microstructures and properties of SiB0.5C1.5N0.5 ceramics consolidated by mechanical alloying and hot pressing, Mat. Sci. Eng. A-Struct. 489 (2008) 187-192.

DOI: 10.1016/j.msea.2007.12.010

Google Scholar

[18] P. Zhang, D. Jia, Z. Yang, X. Duan, Y. Zhou, Microstructural features and properties of nano-crystalline SiC/BN(C) composite ceramic prepared from mechanically alloyed SiBCN powder, J. Alloy Compd. 537 (2012) 346-356.

DOI: 10.1016/j.jallcom.2012.05.073

Google Scholar

[19] Z.H. Yang, D.C. Jia, Y. Zhou, C.Q. Yu, Fabrication and characterization of amorphous SiBCN powders, Ceram. Int. 33 (2007) 1573-1577.

DOI: 10.1016/j.ceramint.2006.06.005

Google Scholar

[20] P. Zhang, B. Yang, Z. Lu, D. Jia, Effect of AlN and ZrO2 on the microstructure and property of the 2Si-B-3C-N ceramic, Ceram. Int. 44 (2018) 3406-3411.

DOI: 10.1016/j.ceramint.2017.11.134

Google Scholar

[21] C. Suryanarayana, Mechanical alloying and milling, Prog. Mater. Sci. 46 (2001) 1-184.

Google Scholar

[22] P. Zhang, D. Jia, Z. Yang, X. Duan, Y. Zhou, Physical and surface characteristics of mechanically alloyed SiBCN powder, Ceram. Int. 38 (2012) 6399-6404.

DOI: 10.1016/j.ceramint.2012.05.012

Google Scholar

[23] M.N. Rahaman, Ceramic processing and sintering, Marcel Dekker, New York, (2003).

Google Scholar