[1]
A. Ikesue, Y.L. Aung, T. Yoda, et al. Fabrication and laser performance of polycrystal and single crystal Nd:YAG by advanced ceramic processing, Opt. Mater. 29 (2007) 1289-1294.
DOI: 10.1016/j.optmat.2005.12.013
Google Scholar
[2]
V. Lupei, A. Lupei, A. Ikesue, Transparent polycrystalline ceramic laser materials, Opt. Mater. 30 (2008) 1781-1786.
DOI: 10.1016/j.optmat.2008.03.003
Google Scholar
[3]
X. Chen, Y. Wu, N. Wei, et al. The roles of cation additives on the color center and optical properties of Yb:YAG transparent ceramic, J. Eur. Ceram. Soc. 38 (2017) 1957-(1965).
Google Scholar
[4]
A. Ikesue, Y.L. Aung, Synthesis and performance of advanced ceramic lasers, J. Am. Ceram. Soc. 89 (2006) 1936-(1944).
Google Scholar
[5]
T. Zhou, L. Zhang, Z. Li, et al. Toward vacuum sintering of YAG transparent ceramic using divalent dopant as sintering aids: Investigation of microstructural evolution and optical property. Ceram. Int. 43 (2017) 3140-3146.
DOI: 10.1016/j.ceramint.2016.11.131
Google Scholar
[6]
Z. Song, J. Liao, X.L. Ding, et al. Synthesis of YAG phosphor particles with excellent morphology by solid state reaction, J. Cryst. Growth. 365 (2006) 24-28.
DOI: 10.1016/j.jcrysgro.2012.12.022
Google Scholar
[7]
J. Ferreira, L.F. Santos, M.A. Rui, Sol–gel-derived Yb:YAG polycrystalline ceramics for laser applications, J. Sol-Gel Sci. Tech. 83 (2017) 436-446.
DOI: 10.1007/s10971-017-4420-1
Google Scholar
[8]
Y. Lv, W. Zhang, H. Liu, et al. Synthesis of nano-sized and highly sinterable Nd:YAG powders by the urea homogeneous precipitation method, Powder Technol. 217 (2012) 140-147.
DOI: 10.1016/j.powtec.2011.10.020
Google Scholar
[9]
H. Jiao, Q. Ma, L. He, et al. Low temperature synthesis of YAG: Ce phosphors by LiF assisted sol-gel combustion method, Powder Technol. 198 (2010) 229-232.
DOI: 10.1016/j.powtec.2009.11.011
Google Scholar
[10]
L.T. Su, A.I.Y. Tok, Y. Zhao, et al. Synthesis and electron-phonon interactions of Ce3+-Doped YAG nanoparticles, J. Phys. Chem. C. 113 (2009) 5974-5979.
DOI: 10.1021/jp809860d
Google Scholar
[11]
G.F. Fan, Y.Q. Tang, W.Z. Lu, et al. Reduce synthesis temperature and improve dispersion of YAG nanopowders based on the co-crystallization method, J. Alloys. Compd. 618 (2014) 1-6.
DOI: 10.1016/j.jallcom.2014.08.074
Google Scholar
[12]
D. Mishra, S. Anand, R.K. Panda, et al. Effect of anions during hydrothermal preparation of boehmites, Mater. Lett. 53 (2002) 133-137.
DOI: 10.1016/s0167-577x(01)00461-x
Google Scholar
[13]
J.G. Li, T. Ikegami, J.H. Lee, et al. Low-temperature fabrication of transparent Yttrium Aluminum Garnet (YAG) ceramics without additives, J. Am. Ceram. Soc. 83 (2000) 961-963.
DOI: 10.1111/j.1151-2916.2000.tb01305.x
Google Scholar
[14]
L. Wen, X.D Sun, Z.M. Xiu, et al. Synthesis of nanocrystalline yttria powder and fabrication of transparent YAG ceramics, J. Eur. Ceram. Soc. 24 (2004) 2681-2688.
DOI: 10.1016/j.jeurceramsoc.2003.09.001
Google Scholar
[15]
J.Li, J.P. Li, Q. Chen, et al. Effect of ammonium sulfate on the monodispersed Y3Al5O12 nanopowders, Powder. Technol. 218 (2012) 46-50.
DOI: 10.1016/j.powtec.2011.11.033
Google Scholar
[16]
Y.M. Zhang, H.M. Yu, Synthesis of YAG powders by the co-precipitation method, Ceram. Int. 35 (2009) 2077-(2081).
DOI: 10.1016/j.ceramint.2008.10.002
Google Scholar
[17]
T. Ikegami, J.G. Li, T. Mori, Fabrication of transparent yttria ceramics by the low-temperature synthesis of yttrium hydroxide, J. Am. Ceram. Soc. 85 (2002) 1725-1729.
DOI: 10.1111/j.1151-2916.2002.tb00342.x
Google Scholar
[18]
H. Gong, D.Y. Tang, H. Huang, et al. Fabrication of yttrium aluminum garnet transparent ceramics from yttria nanopowders synthesized by carbonate precipitation, J. Electroceram. 23 (2009) 89-93.
DOI: 10.1007/s10832-008-9545-8
Google Scholar
[19]
P. Fu, W.Z. Lu, W. Lei, et al., Transparent polycrystalline MgAl2O4 ceramic fabricated by spark plasma sintering: microwave dielectric and optical properties, Ceram. Int. 39 (2013) 2481-2487.
DOI: 10.1016/j.ceramint.2012.09.006
Google Scholar
[20]
J.A. Dean, section 5, Physical properties, in: Lange's handbook of chemistry, World Publishing Company, Beijing, 2003, pp.639-662.
Google Scholar
[21]
P. Melnikov, V.A. Nascimento, L.Z.Z. Consolo, et al. Mechanism of thermal decomposition of yttrium nitrate hexahydrate, Y(NO3)3∙6H2O and modeling of intermediate oxynitrates, J. Therm. Anal. Calorim. 111 (2013) 115-119.
DOI: 10.1007/s10973-012-2236-3
Google Scholar
[22]
B. Pacewska, M. Keshr, Thermal transformations of aluminium nitrate hydrate, Thermochim. Acta. 385 (2002) 73-80.
DOI: 10.1016/s0040-6031(01)00703-1
Google Scholar
[23]
M. Ghasri-Khouzani, M. Meratian, M. Panjepour, Effect of mechanical activation on structure and thermal decomposition of aluminum sulfate, J. Alloys. Compd. 472 (2009) 535-539.
DOI: 10.1016/j.jallcom.2008.05.012
Google Scholar
[24]
Y.H. Sang, H. Liu, Y.H. Lv, et al. Yttrium aluminum garnet nanoparticles synthesized by nitrate decomposition and their low temperature densification behavior, J. Alloys. Compd. 490 (2010) 459-462.
DOI: 10.1016/j.jallcom.2009.10.044
Google Scholar
[25]
J. Ma, L.C. Lim, Effect of particle size distribution on sintering of agglomerate-free submicron alumina powder compacts, J. Eur. Ceram. Soc. 22 (2002) 2197-2208.
DOI: 10.1016/s0955-2219(02)00009-2
Google Scholar