Influence of Sulfate Ion on Phase and Dispersion of Y3Al5O12 Nanopowders with the Co-Crystallization Method

Article Preview

Abstract:

Yttrium aluminum garnet Y3Al5O12 (YAG) nanopowders were synthesized from co-crystallized precursors of Y2(SO4)3, Al(NO3)3-Al2(SO4)3 and Y(NO3)3 with a three-layer core-shell structure. X-ray diffraction (XRD) pattern indicated that too much was detrimental to the synthesis of pure phase YAG because of the serious separation between Y2(SO4)3 and Al(NO3)3-Al2(SO4)3. Transmission electron microscopy (TEM) revealed that was beneficial for the dispersion of the powders owing to the high decomposition temperature of . The powders with the n()/n(Y3+) mole ratio of 1.5/3 calcined at 1050°C showed good sintering activity.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 281)

Pages:

3-8

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Ikesue, Y.L. Aung, T. Yoda, et al. Fabrication and laser performance of polycrystal and single crystal Nd:YAG by advanced ceramic processing, Opt. Mater. 29 (2007) 1289-1294.

DOI: 10.1016/j.optmat.2005.12.013

Google Scholar

[2] V. Lupei, A. Lupei, A. Ikesue, Transparent polycrystalline ceramic laser materials, Opt. Mater. 30 (2008) 1781-1786.

DOI: 10.1016/j.optmat.2008.03.003

Google Scholar

[3] X. Chen, Y. Wu, N. Wei, et al. The roles of cation additives on the color center and optical properties of Yb:YAG transparent ceramic, J. Eur. Ceram. Soc. 38 (2017) 1957-(1965).

Google Scholar

[4] A. Ikesue, Y.L. Aung, Synthesis and performance of advanced ceramic lasers, J. Am. Ceram. Soc. 89 (2006) 1936-(1944).

Google Scholar

[5] T. Zhou, L. Zhang, Z. Li, et al. Toward vacuum sintering of YAG transparent ceramic using divalent dopant as sintering aids: Investigation of microstructural evolution and optical property. Ceram. Int. 43 (2017) 3140-3146.

DOI: 10.1016/j.ceramint.2016.11.131

Google Scholar

[6] Z. Song, J. Liao, X.L. Ding, et al. Synthesis of YAG phosphor particles with excellent morphology by solid state reaction, J. Cryst. Growth. 365 (2006) 24-28.

DOI: 10.1016/j.jcrysgro.2012.12.022

Google Scholar

[7] J. Ferreira, L.F. Santos, M.A. Rui, Sol–gel-derived Yb:YAG polycrystalline ceramics for laser applications, J. Sol-Gel Sci. Tech. 83 (2017) 436-446.

DOI: 10.1007/s10971-017-4420-1

Google Scholar

[8] Y. Lv, W. Zhang, H. Liu, et al. Synthesis of nano-sized and highly sinterable Nd:YAG powders by the urea homogeneous precipitation method, Powder Technol. 217 (2012) 140-147.

DOI: 10.1016/j.powtec.2011.10.020

Google Scholar

[9] H. Jiao, Q. Ma, L. He, et al. Low temperature synthesis of YAG: Ce phosphors by LiF assisted sol-gel combustion method, Powder Technol. 198 (2010) 229-232.

DOI: 10.1016/j.powtec.2009.11.011

Google Scholar

[10] L.T. Su, A.I.Y. Tok, Y. Zhao, et al. Synthesis and electron-phonon interactions of Ce3+-Doped YAG nanoparticles, J. Phys. Chem. C. 113 (2009) 5974-5979.

DOI: 10.1021/jp809860d

Google Scholar

[11] G.F. Fan, Y.Q. Tang, W.Z. Lu, et al. Reduce synthesis temperature and improve dispersion of YAG nanopowders based on the co-crystallization method, J. Alloys. Compd. 618 (2014) 1-6.

DOI: 10.1016/j.jallcom.2014.08.074

Google Scholar

[12] D. Mishra, S. Anand, R.K. Panda, et al. Effect of anions during hydrothermal preparation of boehmites, Mater. Lett. 53 (2002) 133-137.

DOI: 10.1016/s0167-577x(01)00461-x

Google Scholar

[13] J.G. Li, T. Ikegami, J.H. Lee, et al. Low-temperature fabrication of transparent Yttrium Aluminum Garnet (YAG) ceramics without additives, J. Am. Ceram. Soc. 83 (2000) 961-963.

DOI: 10.1111/j.1151-2916.2000.tb01305.x

Google Scholar

[14] L. Wen, X.D Sun, Z.M. Xiu, et al. Synthesis of nanocrystalline yttria powder and fabrication of transparent YAG ceramics, J. Eur. Ceram. Soc. 24 (2004) 2681-2688.

DOI: 10.1016/j.jeurceramsoc.2003.09.001

Google Scholar

[15] J.Li, J.P. Li, Q. Chen, et al. Effect of ammonium sulfate on the monodispersed Y3Al5O12 nanopowders, Powder. Technol. 218 (2012) 46-50.

DOI: 10.1016/j.powtec.2011.11.033

Google Scholar

[16] Y.M. Zhang, H.M. Yu, Synthesis of YAG powders by the co-precipitation method, Ceram. Int. 35 (2009) 2077-(2081).

DOI: 10.1016/j.ceramint.2008.10.002

Google Scholar

[17] T. Ikegami, J.G. Li, T. Mori, Fabrication of transparent yttria ceramics by the low-temperature synthesis of yttrium hydroxide, J. Am. Ceram. Soc. 85 (2002) 1725-1729.

DOI: 10.1111/j.1151-2916.2002.tb00342.x

Google Scholar

[18] H. Gong, D.Y. Tang, H. Huang, et al. Fabrication of yttrium aluminum garnet transparent ceramics from yttria nanopowders synthesized by carbonate precipitation, J. Electroceram. 23 (2009) 89-93.

DOI: 10.1007/s10832-008-9545-8

Google Scholar

[19] P. Fu, W.Z. Lu, W. Lei, et al., Transparent polycrystalline MgAl2O4 ceramic fabricated by spark plasma sintering: microwave dielectric and optical properties, Ceram. Int. 39 (2013) 2481-2487.

DOI: 10.1016/j.ceramint.2012.09.006

Google Scholar

[20] J.A. Dean, section 5, Physical properties, in: Lange's handbook of chemistry, World Publishing Company, Beijing, 2003, pp.639-662.

Google Scholar

[21] P. Melnikov, V.A. Nascimento, L.Z.Z. Consolo, et al. Mechanism of thermal decomposition of yttrium nitrate hexahydrate, Y(NO3)3∙6H2O and modeling of intermediate oxynitrates, J. Therm. Anal. Calorim. 111 (2013) 115-119.

DOI: 10.1007/s10973-012-2236-3

Google Scholar

[22] B. Pacewska, M. Keshr, Thermal transformations of aluminium nitrate hydrate, Thermochim. Acta. 385 (2002) 73-80.

DOI: 10.1016/s0040-6031(01)00703-1

Google Scholar

[23] M. Ghasri-Khouzani, M. Meratian, M. Panjepour, Effect of mechanical activation on structure and thermal decomposition of aluminum sulfate, J. Alloys. Compd. 472 (2009) 535-539.

DOI: 10.1016/j.jallcom.2008.05.012

Google Scholar

[24] Y.H. Sang, H. Liu, Y.H. Lv, et al. Yttrium aluminum garnet nanoparticles synthesized by nitrate decomposition and their low temperature densification behavior, J. Alloys. Compd. 490 (2010) 459-462.

DOI: 10.1016/j.jallcom.2009.10.044

Google Scholar

[25] J. Ma, L.C. Lim, Effect of particle size distribution on sintering of agglomerate-free submicron alumina powder compacts, J. Eur. Ceram. Soc. 22 (2002) 2197-2208.

DOI: 10.1016/s0955-2219(02)00009-2

Google Scholar