A Facile Co-Precipitation Synthesis and Luminescence Properties of Red-Emitting La2O2SO4: x%Eu3+ Nanophosphors

Article Preview

Abstract:

A series of Eu3+ ions activated La2O2SO4 nanophosphors had been prepared successfully by a facial co-precipitation route followed by a subsequent calcination treatment. The commercial Eu2O3, La2O3, HNO3, (NH4)2SO4 and NH3·H2O were used as the raw materials. The structural analyses and luminescence properties of as-prepared products were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM) and photoluminescence (PL) spectra. Pure La2O2SO4 quasi-sphere nanoparticles with an average diameter of 40 nm were successfully prepared by calcining the precursor at 800 °C for 2 h in air. PL results reveal that the strongest red emission peak is centred at 617 nm upon 393 nm light excitation, corresponding to the 5D07F2 transition of Eu3+ ions. Its quenching concentration is 9 mol%, which can be attributed to the exchange interaction among Eu3+ ions and the corresponding decay process shows a double exponential decay behavior, with 0.310 μs for t1 and 1.419 μs for t2.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 281)

Pages:

679-685

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.D.L. Gaspar, E.M. Rodrigues, I.O. Mazali, Luminescent properties of passivated europium(III)-doped rare earth oxide sub-10 nm nanoparticles, RSC Adv. 3 (2013) 2794-2801.

DOI: 10.1039/c2ra22532h

Google Scholar

[2] Z.J. Zhang, X.Lin, J.T. Zhao, Preparation and spectroscopic proper-ties of rare-earth (RE) (RE=Sm, Eu, Tb, Dy, Tm)-activated K2LnZr(PO4)3 (Ln=Y, La, Gd and Lu) phosphate invacuum ultraviolet region, Mater. Res. Bull. 48 (2013) 224-227.

DOI: 10.1016/j.materresbull.2012.10.053

Google Scholar

[3] S.P. Radhika, K.J. Sreeram, B.U. Nair, Mo-doped cerium gadolinium oxide as environmentally sustainable yellow pigments, ACS Sustain. Chem. Eng. 2 (2014) 1251-1256.

DOI: 10.1021/sc500085m

Google Scholar

[4] G. Tian, Z.J. Gu, L.J. Zhou, Mn2+ dopant-controlled synthesis of NaYF4:Yb/Er upconversion nanoparticles for in vivo imaging and drug delivery, Adv. Mater. 24 (2012) 1226-1231.

DOI: 10.1002/adma.201104741

Google Scholar

[5] J.S. Zhong, D.Q. Chen, Y.J. Yuan, Synthesis and spectroscopic investigation of Ba3La6(SiO4)6:Eu2+ green phosphors for white light-emitting diodes, Chem. Eng. J. 309 (2017) 795-801.

DOI: 10.1016/j.cej.2016.10.109

Google Scholar

[6] S.P. Tiwari,K. Kumar, V.K. Rai, Latent fingermarks detection for La2O3:Er3+/Yb3+ phosphor material in upconversion emission mode: A comparative study, J. Appy. Phys. 118 (2015) 183109-183116.

DOI: 10.1063/1.4935279

Google Scholar

[7] B.W. Zhang, H.F. Zou, H.X. Guan, Lu2O2S:Tb3+, Eu3+ nano rods: luminescence, energy transfer, and multicolour tuneable emission, CrystEngComm, 18 (2016) 7620-7628.

DOI: 10.1039/c6ce01441k

Google Scholar

[8] X. Liu, D. Zhang, J. Jiang, General synthetic strategy for high-yield and uniform rare-earth oxysulfate (RE2O2SO4, RE = La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Y, Ho, and Yb) hollow spheres, RSC Adv., 2 (2012) 9362-9365.

DOI: 10.1039/c2ra21007j

Google Scholar

[9] H.T. Zhu, J. Liu, S.Z. Jiang, Diodepumped Yb, Y:CaF2 laser mode-locked by monolayer graphene, Opt. Laser Technol. 75 (2015) 83-86.

DOI: 10.1016/j.optlastec.2015.05.021

Google Scholar

[10] T. Kijima, T. Shinbori, M. Sekitab, Abnormally enhanced Eu3+ emission in Y2O2SO4:Eu3+ inherited from their precursory dodecyl sulfate-templated concentric-layered nanostructure, J. Lumin. 128 (2008) 311-316.

DOI: 10.1016/j.jlumin.2007.07.018

Google Scholar

[11] G. Chen, F.S. Chen, X.H. Liu, Hollow spherical rare-earth-doped yttrium oxysulfate:A novel structure for upconversion. Nano Res. 7 (2014) 1093-1102.

DOI: 10.1007/s12274-014-0472-5

Google Scholar

[12] F.S. Chen, G. Chen, T. Liu, Controllable fabrication and optical properties of uniform gadolinium oxysulfate hollow spheres, Sci. Rep. 5 (2015) 17934-17942.

DOI: 10.1038/srep17934

Google Scholar

[13] S.Tan, S.N. Paglieri, D. Li, Nano-scale sulfur-tolerant lanthanide oxysulfide/oxysulfate catalysts for water–gas-shift reaction in a novel reactor configuration. Catal. Commun. 73 (2016) 16-21.

DOI: 10.1016/j.catcom.2015.10.007

Google Scholar

[14] S. Tan. D. Li, Enhancing catalytic activity of lanthanide oxysulfate (La2O2SO4/Pr2O2SO4) via facile manipulation of nanoscale catalyst synthesis process and reactor configuration. Appl. Catal. A-Gen. 544 (2017) 55-65.

DOI: 10.1016/j.apcata.2017.07.015

Google Scholar

[15] X.J. Wang, Ji.G. Li, M.S. Molokeev, Hydrothermal crystallization of a Ln2(OH)4SO4·nH2O layered compound for a wide range of Ln (Ln=La-Dy), thermolysis, and facile transformation into oxysulfate and oxysulfide Phosphors, RSC Adv. 7 (2017).

DOI: 10.1039/c7ra00645d

Google Scholar

[16] M.Yang, H.Y. Shi, L.W. Ma, Multifunctional luminescent nanofibres from Eu3+-doped La2O2SO4 with enhanced oxygen storage capability, J. Alloy Compt. 695 (2017) 202-207.

DOI: 10.1016/j.jallcom.2016.10.164

Google Scholar

[17] X.Z. Huang, Z. Liu, Y. Yang, Y. Tian, Molten salt synthesis of La2O2SO4 nanosheets and their luminescent prosperities with Eu3+ doping, Funct. Mater. Lett. 06 (2013) 1350019-1350023.

DOI: 10.1142/s1793604713500197

Google Scholar

[18] J. Zhong, D. Chen, Y. Yuan, Synthesis and spectroscopic investigation of Ba3La6(SiO4)6: Eu2+ green phosphors for white light-emitting diodes, Chen. Eng. J. 309 (2017) 795-801.

DOI: 10.1016/j.cej.2016.10.109

Google Scholar

[19] R. Manigandan, K. Giribabu, R. Suresh, Synthesis, growth and photoluminescence behaviour of Gd2O2SO4:Eu3+ nanophosphors: the effect of temperature on the structural, morphological and optical properties, RSC Adv., 5(2015) 7515-7521.

DOI: 10.1039/c4ra13897j

Google Scholar

[20] J.B. Lian, F. Liu, J. Zhang, Y.Y. Yang, X.R. Wang, Z.R. Zhang, and F. Liu, Template-free hydrothermal synthesis of Gd2O2SO4:Eu3+ hollow spheres based on urea-ammonium sulfate (UAS) system, Optik, 127 (2016) 8621-8628.

DOI: 10.1016/j.ijleo.2016.06.069

Google Scholar

[21] X. Wang, J.-G. Li, Z. Qi, Photoluminescence of (La,Eu)2O2SO4 red-emitting phosphors derived from layered hydroxide, J. Mater. Res. 31 (2016) 2268-2276.

DOI: 10.1557/jmr.2016.185

Google Scholar

[22] J. Huang, Y. Song, Y. Sheng, Gd2O2S:Eu3+ and Gd2O2S:Eu3+/Gd2O2S hollow microspheres: Solvothermal preparation and luminescence properties, J. Alloy. Compd. 532 (2012) 34-40.

DOI: 10.1016/j.jallcom.2012.04.005

Google Scholar