[1]
T. H. Maiman, Optical and microwave-optical experiments in ruby, Phys. Rev. Lett. 4 (1960) 564-66.
DOI: 10.1103/physrevlett.4.564
Google Scholar
[2]
T. H. Maiman, Stimulated optical radiation in ruby, Nature 187 (1960) 493-94.
DOI: 10.1038/187493a0
Google Scholar
[3]
M. H. Key, Fast track to fusion energy, Nature 412 (2001) 775-76.
Google Scholar
[4]
S. Nakai and K. Mima, Laser driven inertial fusion energy: Present and prospective, Rep. Prog. Phys. 67 (2004) 321-49.
DOI: 10.1088/0034-4885/67/3/r04
Google Scholar
[5]
A. Ikesue, I. Furusato, and K. Kamata, Fabrication of polycrystalline, transparent YAG ceramics by a solid-state reaction method, J. Am. Ceram. Soc. 78 (1995) 225-28.
DOI: 10.1002/chin.199617258
Google Scholar
[6]
A. Agnesi, L. Carra, F. Pirzio, G. Reali, S. Veronesi, J. T. Thomas, et al., Ceramic Yb:YAG for multiwatt compact passively Q-switched lasers, Opt. Commun. 315 (2014) 208-12.
DOI: 10.1016/j.optcom.2013.10.078
Google Scholar
[7]
A. Ikesue and Y. L. Aung, Ceramic laser materials, Nat. Photonics 2 (2008) 721-27.
Google Scholar
[8]
C. Huang, T. Lu, L. Lin, M. Lei, and C. Huang, A study on toughening and strengthening of Mg-Al spinel transparent ceramics, Key Eng. Mater. 336-338 (2007) 1207-10.
DOI: 10.4028/www.scientific.net/kem.336-338.1207
Google Scholar
[9]
W. Si, C. Xiong, Y. Jiang, Z. Xing, and W. Pan, Microwave assisted preparation of YAG and Yb: YAG transparent ceramic nano-powders for laser crystal, Key Eng. Mater. 697 (2016) 76-79.
DOI: 10.4028/www.scientific.net/kem.697.76
Google Scholar
[10]
C. F. Chen, R. A. Synowicki, M. J. Brand, E. L. Tegtmeier, J. D. Montalvo, J. Ivy, et al., Processing and characteristics of transparent Gd3TaO7 polycrystalline ceramics, J. Am. Ceram. Soc. 101 (2018) 1847-56.
DOI: 10.1111/jace.15359
Google Scholar
[11]
C. Feng, Z. Liu, Z. Cong, X. Zhao, J. Fang, and Q. Wang, Eye-safe picosecond solid-state Nd:YAG ceramic laser at 1.44 mu m, IEEE J. Sel. Top. Quantum Electron. 24 (2018) 1-4.
DOI: 10.1109/jstqe.2018.2794601
Google Scholar
[12]
L. Wang, H. Huang, X. Ren, J. Wang, D. Shen, Y. Zhao, et al., Nanosecond pulse generation at 2.7 mu m from a passively Q-switched er:Y2O3 ceramic laser, IEEE J. Sel. Top. Quantum Electron. 24 (2018).
DOI: 10.1109/jstqe.2018.2801478
Google Scholar
[13]
S. Bigotta, L. Galecki, A. Katz, J. Bohmler, S. Lemonnier, E. Barraud, et al., Resonantly pumped eye-safe Er3+:YAG sps-hip ceramic laser, Opt. Express 26 (2018) 3435-42.
DOI: 10.1364/oe.26.003435
Google Scholar
[14]
S. F. Wang, J. Zhang, D. W. Luo, F. Gu, D. Y. Tang, Z. L. Dong, et al., Transparent ceramics: Processing, materials and applications, Prog. Solid State Chem. 41 (2013) 20-54.
Google Scholar
[15]
J. Sanghera, W. Kim, G. Villalobos, B. Shaw, C. Baker, J. Frantz, et al., Ceramic laser materials, Materials 5 (2012) 258-77.
DOI: 10.3390/ma5020258
Google Scholar
[16]
B. Xia, X. He, X. Zheng, P. Qiu, W. Cheng, and X. Zeng, Light scattering properties for PLZT transparent ceramics of different zr/ti ratios, Key Eng. Mater. 512-515 (2012) 1537-40.
DOI: 10.4028/www.scientific.net/kem.512-515.1537
Google Scholar
[17]
B. Xia, X. He, X. Zeng, P. Qiu, and W. Cheng, Effects of Zr/Ti ratio on the electric-induced light scattering performances of PLZT transparent ceramics, Key Eng. Mater. 655 (2015) 136-40.
DOI: 10.4028/www.scientific.net/kem.655.136
Google Scholar
[18]
I. W. Chen and X. H. Wang, Sintering dense nanocrystalline ceramics without final-stage grain growth, Nature 404 (2000) 168-71.
DOI: 10.1038/35004548
Google Scholar
[19]
C. Mätzler, Matlab functions for mie scattering and absorption, Research Report No. 2002-08. institut für Angewandte Physik, (2002).
Google Scholar
[20]
W. L. Bond, Measurement of refractive indices of several crystals, J. Appl. Phys. 36 (1965) 1674.
Google Scholar
[21]
D. L. Wood, K. Nassau, and T. Y. Kometani, Refractive-index of Y2O3 stabilized cubic zirconia - variation with composition and wavelength, Appl. Optics 29 (1990) 2485-88.
DOI: 10.1364/ao.29.002485
Google Scholar