Calculation of Pore Scattering in Transparent Ceramics

Article Preview

Abstract:

Light scattering caused by pores detrimentally affects the optical transparency of transparent ceramics. Herein, Mie theory has been used to calculate the cross-section of pore scattering in transparent ceramics, and the influence of wavelength, pore size distribution and refractive index has been discussed in detail. For wavelength between 200 nm and 2000 nm, the scattering cross-section decreases with increasing wavelength, which means that pore scattering is more detrimental to short-wavelength transparency. With ZOLD function simulating the pore size distribution inside the ceramic, it has been found that the scattering is strongest when the most-probable diameter dm equals the incident light wavelength λ. And FWHM (full width at half maximum) parameter a also affects the scattering cross-section. a between 0.003 and 0.7 is necessary for obtaining high optical transparency in visible wavelength range. The method presented in this work is available for the estimation of scattering effect in different kinds of materials, which may be useful for future design of high-transparency ceramics.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 281)

Pages:

655-660

Citation:

Online since:

August 2018

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. H. Maiman, Optical and microwave-optical experiments in ruby, Phys. Rev. Lett. 4 (1960) 564-66.

DOI: 10.1103/physrevlett.4.564

Google Scholar

[2] T. H. Maiman, Stimulated optical radiation in ruby, Nature 187 (1960) 493-94.

DOI: 10.1038/187493a0

Google Scholar

[3] M. H. Key, Fast track to fusion energy, Nature 412 (2001) 775-76.

Google Scholar

[4] S. Nakai and K. Mima, Laser driven inertial fusion energy: Present and prospective, Rep. Prog. Phys. 67 (2004) 321-49.

DOI: 10.1088/0034-4885/67/3/r04

Google Scholar

[5] A. Ikesue, I. Furusato, and K. Kamata, Fabrication of polycrystalline, transparent YAG ceramics by a solid-state reaction method, J. Am. Ceram. Soc. 78 (1995) 225-28.

DOI: 10.1002/chin.199617258

Google Scholar

[6] A. Agnesi, L. Carra, F. Pirzio, G. Reali, S. Veronesi, J. T. Thomas, et al., Ceramic Yb:YAG for multiwatt compact passively Q-switched lasers, Opt. Commun. 315 (2014) 208-12.

DOI: 10.1016/j.optcom.2013.10.078

Google Scholar

[7] A. Ikesue and Y. L. Aung, Ceramic laser materials, Nat. Photonics 2 (2008) 721-27.

Google Scholar

[8] C. Huang, T. Lu, L. Lin, M. Lei, and C. Huang, A study on toughening and strengthening of Mg-Al spinel transparent ceramics, Key Eng. Mater. 336-338 (2007) 1207-10.

DOI: 10.4028/www.scientific.net/kem.336-338.1207

Google Scholar

[9] W. Si, C. Xiong, Y. Jiang, Z. Xing, and W. Pan, Microwave assisted preparation of YAG and Yb: YAG transparent ceramic nano-powders for laser crystal, Key Eng. Mater. 697 (2016) 76-79.

DOI: 10.4028/www.scientific.net/kem.697.76

Google Scholar

[10] C. F. Chen, R. A. Synowicki, M. J. Brand, E. L. Tegtmeier, J. D. Montalvo, J. Ivy, et al., Processing and characteristics of transparent Gd3TaO7 polycrystalline ceramics, J. Am. Ceram. Soc. 101 (2018) 1847-56.

DOI: 10.1111/jace.15359

Google Scholar

[11] C. Feng, Z. Liu, Z. Cong, X. Zhao, J. Fang, and Q. Wang, Eye-safe picosecond solid-state Nd:YAG ceramic laser at 1.44 mu m, IEEE J. Sel. Top. Quantum Electron. 24 (2018) 1-4.

DOI: 10.1109/jstqe.2018.2794601

Google Scholar

[12] L. Wang, H. Huang, X. Ren, J. Wang, D. Shen, Y. Zhao, et al., Nanosecond pulse generation at 2.7 mu m from a passively Q-switched er:Y2O3 ceramic laser, IEEE J. Sel. Top. Quantum Electron. 24 (2018).

DOI: 10.1109/jstqe.2018.2801478

Google Scholar

[13] S. Bigotta, L. Galecki, A. Katz, J. Bohmler, S. Lemonnier, E. Barraud, et al., Resonantly pumped eye-safe Er3+:YAG sps-hip ceramic laser, Opt. Express 26 (2018) 3435-42.

DOI: 10.1364/oe.26.003435

Google Scholar

[14] S. F. Wang, J. Zhang, D. W. Luo, F. Gu, D. Y. Tang, Z. L. Dong, et al., Transparent ceramics: Processing, materials and applications, Prog. Solid State Chem. 41 (2013) 20-54.

Google Scholar

[15] J. Sanghera, W. Kim, G. Villalobos, B. Shaw, C. Baker, J. Frantz, et al., Ceramic laser materials, Materials 5 (2012) 258-77.

DOI: 10.3390/ma5020258

Google Scholar

[16] B. Xia, X. He, X. Zheng, P. Qiu, W. Cheng, and X. Zeng, Light scattering properties for PLZT transparent ceramics of different zr/ti ratios, Key Eng. Mater. 512-515 (2012) 1537-40.

DOI: 10.4028/www.scientific.net/kem.512-515.1537

Google Scholar

[17] B. Xia, X. He, X. Zeng, P. Qiu, and W. Cheng, Effects of Zr/Ti ratio on the electric-induced light scattering performances of PLZT transparent ceramics, Key Eng. Mater. 655 (2015) 136-40.

DOI: 10.4028/www.scientific.net/kem.655.136

Google Scholar

[18] I. W. Chen and X. H. Wang, Sintering dense nanocrystalline ceramics without final-stage grain growth, Nature 404 (2000) 168-71.

DOI: 10.1038/35004548

Google Scholar

[19] C. Mätzler, Matlab functions for mie scattering and absorption, Research Report No. 2002-08. institut für Angewandte Physik, (2002).

Google Scholar

[20] W. L. Bond, Measurement of refractive indices of several crystals, J. Appl. Phys. 36 (1965) 1674.

Google Scholar

[21] D. L. Wood, K. Nassau, and T. Y. Kometani, Refractive-index of Y2O3 stabilized cubic zirconia - variation with composition and wavelength, Appl. Optics 29 (1990) 2485-88.

DOI: 10.1364/ao.29.002485

Google Scholar