Preparation and Properties of Si3N4-BaTiO3 Composite Ceramics

Article Preview

Abstract:

Si3N4-BaTiO3 composite ceramics, a type of high dielectric materials applied in the multifunction radome, were prepared by gas pressure-sintering method. The influences of BaTiO3 power content on the mechanical performances, dielectric properties and microstructure of Si3N4-BaTiO3 composite ceramics were investigated. The results showed that the sintering density, the elastic modulus and the flexural strength of Si3N4-BaTiO3 composite ceramics all firstly increased and then decreased along with the increase of BaTiO3 power in sample. Meanwhile, Relationship between BaTiO3 power content and dielectric properties of Si3N4-BaTiO3 composite ceramics within the frequency range of 8.2–12.4 GHz (X-band) was studied. The average of dielectric constant e of Si3N4-BaTiO3 composite ceramics increased from 7.33 to 9.98 and the average of dielectric loss tand increased from 2.8 ´ 10-3 to 0.0168 when the content of BaTiO3 power increased from 0 to 25 wt.%. The increase of the dielectric properties of Si3N4–BaTiO3 composite ceramics were attributed to the electronic and molecular polarization at interface between Si3N4 and BaTiO3, compared with the pure matrix Si3N4.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 281)

Pages:

646-651

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. S. Fox, E. J. Opila, Q. N. Nguyen, Paralinear oxidation of silicon nitride in a water-vapor/oxygen environment, Journal of American Ceramic Society. 86 (2003) 1256-1261.

DOI: 10.1111/j.1151-2916.2003.tb03461.x

Google Scholar

[2] Y. Inagaki, O. T. Kondon, High performance porous silicon nitrides, Journal of the European Ceramic Society. 22 (2002) 2489-2494.

DOI: 10.1016/s0955-2219(02)00107-3

Google Scholar

[3] A. Zerr, M. Kempf, M. Schwarz, E. Kroke. M. Goken, Elastic moduli and hardness of cubic silicon nitride, Journal of American Ceramic Society. 85 (2002) 86-90.

DOI: 10.1111/j.1151-2916.2002.tb00044.x

Google Scholar

[4] M. H. Bocanegra-Bernal, B. Matovic, Mechanical properties of silicon nitride-based ceramics and its use in structural applications at high temperatures, Mater. Sci. Eng. A 527 (2010) 1314-1338.

DOI: 10.1016/j.msea.2009.09.064

Google Scholar

[5] G. Zheng, J. Zhao, C. Jia, Thermal shock and thermal fatigue resistance of Sialon- Si3N4 graded composite ceramic materials, Int. J. Refract. Met. Hard Mater. 35 (2012) 55-61.

DOI: 10.1016/j.ijrmhm.2012.04.003

Google Scholar

[6] M. Y. Sun, Q. G. Li, X. Chen, The densification of Si3N4 ceramics using different additives via microwave sintering, J. Ceram. Soc. Jpn. 122 (2014) 914-916.

Google Scholar

[7] P. P. Zhang, H. S. Wang, L. Li, Preparation and properties of Si3N4-SiC radar wave-absorbing nanocomposites, Key Engineering Materials. 697 (2016) 462-466.

DOI: 10.4028/www.scientific.net/kem.697.462

Google Scholar

[8] L. Li, L. Gu, W. H. Yuan, J. Jie, Effect of magnesium titanate content on microstructures, mechanical performances and dielectric properties of Si3N4-based composite ceramics, Ceramics International. 43 (2017) 9906-9911.

DOI: 10.1016/j.ceramint.2017.04.177

Google Scholar

[9] Q. Y. Meng, Z. H. Zhao, X. L. Li, Low temperature pressureless sintering of dense silicon nitride using BaO-Al2O3-SiO2 glass as sintering aid, Ceramics International.43(2017) 10123-10129.

DOI: 10.1016/j.ceramint.2017.05.033

Google Scholar

[10] L. Ceja-Cárdenas, J. Lemus-Ruíz, D. Jaramillo-Vigreras, Spark plasma sintering of α- Si3N4 ceramics with Al2O3 and Y2O3 as additives and its morphology transformation, Journal of Alloys and Compounds. 501 (2010) 345-351.

DOI: 10.1016/j.jallcom.2010.04.102

Google Scholar

[11] S. Ahmad, T. Ludwig, M. Herrmann, Crystallisation studies of Si3N4-Al2O3-SiO2-Y2O3 glass-ceramics under different heat-treatment conditions, Journal of the European Ceramic Society. 35 (2015) 2261-2268.

DOI: 10.1016/j.jeurceramsoc.2015.02.018

Google Scholar

[12] S. J. Lee, S. Baek, Effect of SiO2 content on the microstructure, mechanical and dielectric properties of Si3N4 ceramics, Ceramics International. 42 (2016) 9921-9925.

DOI: 10.1016/j.ceramint.2016.03.092

Google Scholar

[13] S. Hampshire, E. Nestor, R. Flynn, Yttrium oxynitride glasses: properties and potential for crystallization to glass-ceramics, Journal of the European Ceramic Society. 14 (1994) 261-273.

DOI: 10.1016/0955-2219(94)90095-7

Google Scholar

[14] C. C. Guedes-Silva, F. M. de Souza Carvalho, J. C. Bressiani, Effect of rare-earth oxides on properties of silicon nitride obtained by normal sintering and sinter-HIP, J. Rare Earths. 30 (2012) 1177-1183.

DOI: 10.1016/s1002-0721(12)60201-4

Google Scholar

[15] H. K. Schmidt, The role of TiN in the inergranular phase-forming process in TiN-dispersed Si3N4 nanocomposites, Journal of American Ceramic Society. 88 (2005) 404-410.

DOI: 10.1111/j.1551-2916.2005.00054.x

Google Scholar

[16] N. Alfian, H. Y. Dang, Metal oxide additives for the sintering of silicon carbide: reactivity and densification, Curr. Appl. Phys. 13 (2013) 287-292.

DOI: 10.1016/j.cap.2012.07.027

Google Scholar

[17] C. Kawai, Effect of grain size distribution on the strength of porous Si3N4 ceramics composed of elongated b- Si3N4 grains, J. Mater. Sci. 36(2001) 5713-5717.

Google Scholar

[18] W. L. Song, M. S. Cao, Z. L. Hou, J. Yuan and X. Y. Fang, High-temperature microwave absorption and evolutionary behavior of multi-walled carbon-nanotube nanocomposite, Scripta Mater., 61(2009) 201-204.

DOI: 10.1016/j.scriptamat.2009.03.048

Google Scholar