[1]
D. S. Fox, E. J. Opila, Q. N. Nguyen, Paralinear oxidation of silicon nitride in a water-vapor/oxygen environment, Journal of American Ceramic Society. 86 (2003) 1256-1261.
DOI: 10.1111/j.1151-2916.2003.tb03461.x
Google Scholar
[2]
Y. Inagaki, O. T. Kondon, High performance porous silicon nitrides, Journal of the European Ceramic Society. 22 (2002) 2489-2494.
DOI: 10.1016/s0955-2219(02)00107-3
Google Scholar
[3]
A. Zerr, M. Kempf, M. Schwarz, E. Kroke. M. Goken, Elastic moduli and hardness of cubic silicon nitride, Journal of American Ceramic Society. 85 (2002) 86-90.
DOI: 10.1111/j.1151-2916.2002.tb00044.x
Google Scholar
[4]
M. H. Bocanegra-Bernal, B. Matovic, Mechanical properties of silicon nitride-based ceramics and its use in structural applications at high temperatures, Mater. Sci. Eng. A 527 (2010) 1314-1338.
DOI: 10.1016/j.msea.2009.09.064
Google Scholar
[5]
G. Zheng, J. Zhao, C. Jia, Thermal shock and thermal fatigue resistance of Sialon- Si3N4 graded composite ceramic materials, Int. J. Refract. Met. Hard Mater. 35 (2012) 55-61.
DOI: 10.1016/j.ijrmhm.2012.04.003
Google Scholar
[6]
M. Y. Sun, Q. G. Li, X. Chen, The densification of Si3N4 ceramics using different additives via microwave sintering, J. Ceram. Soc. Jpn. 122 (2014) 914-916.
Google Scholar
[7]
P. P. Zhang, H. S. Wang, L. Li, Preparation and properties of Si3N4-SiC radar wave-absorbing nanocomposites, Key Engineering Materials. 697 (2016) 462-466.
DOI: 10.4028/www.scientific.net/kem.697.462
Google Scholar
[8]
L. Li, L. Gu, W. H. Yuan, J. Jie, Effect of magnesium titanate content on microstructures, mechanical performances and dielectric properties of Si3N4-based composite ceramics, Ceramics International. 43 (2017) 9906-9911.
DOI: 10.1016/j.ceramint.2017.04.177
Google Scholar
[9]
Q. Y. Meng, Z. H. Zhao, X. L. Li, Low temperature pressureless sintering of dense silicon nitride using BaO-Al2O3-SiO2 glass as sintering aid, Ceramics International.43(2017) 10123-10129.
DOI: 10.1016/j.ceramint.2017.05.033
Google Scholar
[10]
L. Ceja-Cárdenas, J. Lemus-Ruíz, D. Jaramillo-Vigreras, Spark plasma sintering of α- Si3N4 ceramics with Al2O3 and Y2O3 as additives and its morphology transformation, Journal of Alloys and Compounds. 501 (2010) 345-351.
DOI: 10.1016/j.jallcom.2010.04.102
Google Scholar
[11]
S. Ahmad, T. Ludwig, M. Herrmann, Crystallisation studies of Si3N4-Al2O3-SiO2-Y2O3 glass-ceramics under different heat-treatment conditions, Journal of the European Ceramic Society. 35 (2015) 2261-2268.
DOI: 10.1016/j.jeurceramsoc.2015.02.018
Google Scholar
[12]
S. J. Lee, S. Baek, Effect of SiO2 content on the microstructure, mechanical and dielectric properties of Si3N4 ceramics, Ceramics International. 42 (2016) 9921-9925.
DOI: 10.1016/j.ceramint.2016.03.092
Google Scholar
[13]
S. Hampshire, E. Nestor, R. Flynn, Yttrium oxynitride glasses: properties and potential for crystallization to glass-ceramics, Journal of the European Ceramic Society. 14 (1994) 261-273.
DOI: 10.1016/0955-2219(94)90095-7
Google Scholar
[14]
C. C. Guedes-Silva, F. M. de Souza Carvalho, J. C. Bressiani, Effect of rare-earth oxides on properties of silicon nitride obtained by normal sintering and sinter-HIP, J. Rare Earths. 30 (2012) 1177-1183.
DOI: 10.1016/s1002-0721(12)60201-4
Google Scholar
[15]
H. K. Schmidt, The role of TiN in the inergranular phase-forming process in TiN-dispersed Si3N4 nanocomposites, Journal of American Ceramic Society. 88 (2005) 404-410.
DOI: 10.1111/j.1551-2916.2005.00054.x
Google Scholar
[16]
N. Alfian, H. Y. Dang, Metal oxide additives for the sintering of silicon carbide: reactivity and densification, Curr. Appl. Phys. 13 (2013) 287-292.
DOI: 10.1016/j.cap.2012.07.027
Google Scholar
[17]
C. Kawai, Effect of grain size distribution on the strength of porous Si3N4 ceramics composed of elongated b- Si3N4 grains, J. Mater. Sci. 36(2001) 5713-5717.
Google Scholar
[18]
W. L. Song, M. S. Cao, Z. L. Hou, J. Yuan and X. Y. Fang, High-temperature microwave absorption and evolutionary behavior of multi-walled carbon-nanotube nanocomposite, Scripta Mater., 61(2009) 201-204.
DOI: 10.1016/j.scriptamat.2009.03.048
Google Scholar