Topochemical Synthesis of High-Aspect-Ratio Lead-Free (K, Na)NbO3 Plate-Like Structures

Article Preview

Abstract:

Single crystalline lead-free (K, Na)NbO3 (KNN) nanostructures have attracted much attention for the high piezoelectricity and environmental compatibility. Especially, the plate-like KNN structures are supposed to be utilized in the synthesis of textured KNN-based ceramics. The KNN plate-like templates were prepared by a two-step molten salt reaction. The layered-perovskite Bi2.5Na3.5Nb5O18 (BNN5) was first prepared by using Bi2O3, Nb2O5, Na2CO3, NaCl as raw materials. The BNN5 precursors possess high aspect ratio with an average size of 15 - 20 μm in width and 0.5 - 1 μm in thickness. Then Bi element in the BNN5 was replaced by Na/K through topochemical reaction, and KNN plate-like products which have anisotropic crystal structure were fabricated. It should be emphasized that piezoresponse force microscopy (PFM) was used to confirm three-dimensional (3-D) morphology, while piezoelectric properties of single crystalline KNN platelets were acquired simultaneously. The as-synthesized KNN structures are expected to play an important role in the study of textured KNN ceramics. Meanwhile, the methodology investigated in this paper can also be applied for further fundamental studies on KNN system as well as other lead-free piezoelectric materials.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 281)

Pages:

622-627

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Shimizu, N. Kumada, K. Nakashima, I. Fujii, D. Tanaka, Microstructure control of barium titanate-potassium niobate solid solution system ceramics by MPB engineering and their piezoelectric properties, Key Eng. Mater. 485 (2011) 89-92.

DOI: 10.4028/www.scientific.net/kem.485.89

Google Scholar

[2] J. Varghese, R.W. Whatmore, J.D. Holmes, Ferroelectric nanoparticles, wires and tubes: synthesis, characterisation and applications, J. Mater. Chem. C 1 (2013) 2618-2638.

DOI: 10.1039/c3tc00597f

Google Scholar

[3] S. Bai, F. Zhang, T. Karaki, M. Adachi, Effect of surfactants on morphology of niobate hydrate particles in hydrothermal synthesis, Jpn. J. Appl. Phys. 50 (2011) 321-331.

DOI: 10.7567/jjap.50.09nd12

Google Scholar

[4] F. Zhang, S. Bai, T. Karaki, Preparation of plate-like potassium sodium niobate particles by hydrothermal method, Phys. Status Solidi A 30 (2011) 1052-1055.

DOI: 10.1002/pssa.201000097

Google Scholar

[5] A. Mitani, Y. Oba, Piezoelectric properties and dielectric property of Li added KNN ceramics, Key Eng. Mater. 566 (2013) 72-75.

DOI: 10.4028/www.scientific.net/kem.566.72

Google Scholar

[6] C. Suksri, P. Parjansri, S. Thonglem, U. Intatha, S. Eitssayeam, Effects of NaNbO3 crystals on electrical properties of K0.5Na0.5NbO3 ceramics, Key Eng. Mater. 690 (2016) 126-130.

DOI: 10.4028/www.scientific.net/kem.690.126

Google Scholar

[7] R.F. Cheng, Z. Xu, R. Chu, J. Hao, J. Du, G. Li, Electric field-induced ultrahigh strain and large piezoelectric effect in Bi1/2Na1/2TiO3-based lead-free piezoceramics, J. Eur. Ceram. Soc. 36 (2016) 489-496.

DOI: 10.1016/j.ceramint.2015.03.015

Google Scholar

[8] H. Takao, Y. Saito, Y. Aoki, K. Horibuchi, Microstructural evolution of crystalline-oriented (K0.5Na0.5)NbO3 piezoelectric ceramics with a sintering aid of CuO, J. Am. Ceram. Soc. 89 (2006) 1951-(1956).

DOI: 10.1111/j.1551-2916.2006.01042.x

Google Scholar

[9] Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, Lead-free piezoceramics, Nature 432 (2004) 84-87.

DOI: 10.1038/nature03028

Google Scholar

[10] D. Maurya, Y. Zhou, Y.K. Yan, S. Priya, Synthesis mechanism of grain-oriented lead-free piezoelectric Na0.5Bi0.5TiO3-BaTiO3 ceramics with giant piezoelectric response, J. Mater. Chem. C 1 (2013) 2102-2111.

DOI: 10.1039/c3tc00619k

Google Scholar

[11] H.B. Chen, J.W. Zhai, Enhanced piezoelectric properties of CaBi2Nb2O9 with Eu modification and templated grain growth, Key Eng. Mater. 512-515(2012) 1367-1371.

DOI: 10.4028/www.scientific.net/kem.512-515.1367

Google Scholar

[12] D. Liu, Y.K. Yan, H.P. Zhou, Synthesis of micron-scale platelet BaTiO3, J. Am. Ceram. Soc. 90 (2010) 1323-1326.

Google Scholar

[13] Y.K. Yan, D. Liu, W. Zhao, H. Zhou, H. Fang, Topochemical synthesis of a high-aspect-ratio platelet NaNbO3 template, J. Am. Ceram. Soc. 90 (2007) 2399-2403.

DOI: 10.1111/j.1551-2916.2007.01818.x

Google Scholar

[14] Y.F. Chang, Z.P. Yang, M.Y. Dong, Z. Liu, Z. Wang, Phase structure, morphology, and Raman characteristics of NaNbO3 particles synthesized by different methods, Mater. Res. Bull. 44 (2009) 538-542.

DOI: 10.1016/j.materresbull.2008.07.014

Google Scholar

[15] A. Waleed, M.M. Tavakoli, L. Gu, Z. Wang, D. Zhang, A. Manikandan, Lead-free perovskite nanowire array photodetectors with drastically improved stability in nanoengineering templates, Nano Lett. 17 (2017) 523.

DOI: 10.1021/acs.nanolett.6b04587

Google Scholar

[16] Y. Liu, Y. Zhang, M.J. Chow, Q.N. Chen, J. Li, Biological ferroelectricity uncovered in aortic walls by piezoresponse force microscopy, Phys. Rev. Lett. 108 (2012) 078103.

DOI: 10.1103/physrevlett.108.078103

Google Scholar

[17] L.Q. Cheng, J.F. Li, A review on one dimensional perovskite nanocrystals for piezoelectric applications, J. Mater. 2 (2016) 25-36.

Google Scholar

[18] Q. Yu, J.F. Li, F.Y. Zhu, J. Li, Domain evolution of tetragonal Pb(ZrxTi1-x)O3 piezoelectric thin films on SrTiO3 (100) surfaces: combined effects of misfit strain and Zr/Ti ratio, J. Mater. Chem. C 2 (2014) 5836-5841.

DOI: 10.1039/c4tc00643g

Google Scholar

[19] L.Q. Cheng, K. Wang, J.F. Li, Y. Liu, J. Li, Piezoelectricity of lead-free (K, Na)NbO3 nanoscale single crystals, J. Mater. Chem. C 2 (2014) 9091-9098.

DOI: 10.1039/c4tc01745e

Google Scholar

[20] L.Y. Li, Y. Zhang, W.F. Bai, B. Shen, J. Zhai, H. Chen, Synthesis of high aspect ratio (K, Na)NbO3 plate-like particles and study on the synthesis mechanism, Dalton Trans. 44 (2015) 11621-11625.

DOI: 10.1039/c5dt01414j

Google Scholar