Using Superhydrophobic SU-8 Film as the Dielectric for Electrowetting-on-Dielectric

Article Preview

Abstract:

In this paper, we study the electrowetting effect of superhydrophobic SU-8 film as the dielectric for Electrowetting-on-Dielectric (EWOD). The change of apparent contact angle (APCA) on superhydrophobic surface in electrowetting systems was measured and analyzed using a modified Lippmann-Yong equation. The variation of APCA between droplet and device surface under various DC voltage and AC voltage of different frequencies was fully experimented. The experimental results were in good agreement with the theoretical predictions. This study shows the potential of using superhydrophobic SU-8 film as the dielectric layer in high-performance EWOD devices.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 281)

Pages:

604-609

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W.Q. Wang, Y. Su. Dielectric Breakdown in Electrowetting-Based Liquid Microactuators. Key Engineering Materials 655(2015):132-135.

DOI: 10.4028/www.scientific.net/kem.655.132

Google Scholar

[2] R.B. Fair, Digital microfluidics: is a true lab-on-a-chip possible? Microfluidics & Nanofluidics 3.3(2007):245-281.

DOI: 10.1007/s10404-007-0161-8

Google Scholar

[3] L. Zhang, J.J. Mei, B.W. Yan, et al. A Test Droplets Dispensing Solution for Digital Microfluidic Biochip Parallel Testing. Key Engineering Materials 609-610(2014):670-674.

DOI: 10.4028/www.scientific.net/kem.609-610.670

Google Scholar

[4] S. Paul, H. Moon. Separation of binary solution by liquid-liquid microextraction on EWOD digital microfluidics. IEEE, International Conference on Nano/micro Engineered and Molecular Systems IEEE, 2017:342-345.

DOI: 10.1109/nems.2017.8017038

Google Scholar

[5] Y. Guan, A.Y. Tong, N.Y.J.B. Nikapitiya, et al. Numerical modeling of microscale droplet dispensing in parallel-plate electrowetting-on-dielectric (EWOD) devices with various reservoir designs. Microfluidics & Nanofluidics 20.2(2016):39.

DOI: 10.1007/s10404-016-1703-8

Google Scholar

[6] C. Dong, Y. Gao, Y. Chen, et al. A 3D microblade structure for precise and parallel droplet splitting on digital microfluidic chips. Lab on A Chip 17.5(2017):896.

DOI: 10.1039/c6lc01539e

Google Scholar

[7] J.Q. Niu, Z.K. Xie, Z.X. Yue and W.Q. Wang. Using Ferroelectric Thin Film as the Dielectric for Electrowetting-on- Dielectric. Key Engineering Materials 697(2016):227-230.

DOI: 10.4028/www.scientific.net/kem.697.227

Google Scholar

[8] H.F. Zhang, X.W. Liu, M. Zhao, et al. Fabrication of Super-Hydrophobic Surface on Stainless Steel Using Chemical Etching Method. Key Engineering Materials 562-565(2013):33-38.

DOI: 10.4028/www.scientific.net/kem.562-565.33

Google Scholar

[9] E. N. Abdul Latip, L. Coudron, M. B. Mcdonnell, et al. Protein droplet actuation on superhydro- phobic surfaces: a new approach toward anti-biofouling electrowetting systems. Rsc Advances 7.78(2017):49633-49648.

DOI: 10.1039/c7ra10920b

Google Scholar

[10] A.B.D. Cassie. Contact angles. Discussions of the Faraday Society 3.5(1948):11-16.

Google Scholar

[11] R.N. Wenzel. Surface Roughness and Contact Angle. Journal of Physical & Colloid Chemistry 53.9(1949):1466-1467.

DOI: 10.1021/j150474a015

Google Scholar

[12] V. Bahadur, S.V. Garimella. Electrowetting-based control of static droplet states on rough surfaces. Langmuir 23.9 (2007): 4918-4924.

DOI: 10.1021/la0631365

Google Scholar

[13] H. Rong, J. Wei and X. Chen. Study on Fabrication Process of SU8 Photoresist Microstructures and Evaluation of Stress Gradient. Key Engineering Materials 609-610.1(2014):740-744.

DOI: 10.4028/www.scientific.net/kem.609-610.740

Google Scholar

[14] M. Talebi, K Cobry, A. Sengupta, et al. Transparent Glass/SU8-Based Microfluidic Device with on-Channel Electrical Sensors. 1.4(2017):336.

DOI: 10.3390/proceedings1040336

Google Scholar

[15] A.A. Kim, K. Kustanovich, D. Baratian, et al. SU-8 free-standing microfluidic probes. Biomicrofluidics 11.1(2017):014112.

DOI: 10.1063/1.4975026

Google Scholar

[16] N.A. Ramli, T. Arslan, N. Haridas, et al. Design, simulation and analysis of a digital RF MEMS varactor using thick SU-8 polymer. Microsystem Technologies 9(2017):1-10.

DOI: 10.1007/s00542-017-3371-3

Google Scholar

[17] V. Bahadur, S.V. Garimella. Electrowetting-Based Control of Droplet Transition and Morphology on Artificially Microstructured Surfaces. Langmuir the Acs Journal of Surfaces & Colloids 24.15(2008):8338.

DOI: 10.1021/la800556c

Google Scholar

[18] W.Q. Wang, J.Q. Niu, Z.K. Xie, et al. Dielectric Breakdown and Failure of Ferroelectric Films as the Dielectric for Electrowetting Systems. Key Engineering Materials 697 (2016): 231.

DOI: 10.4028/www.scientific.net/kem.697.231

Google Scholar