[1]
W.Q. Wang, Y. Su. Dielectric Breakdown in Electrowetting-Based Liquid Microactuators. Key Engineering Materials 655(2015):132-135.
DOI: 10.4028/www.scientific.net/kem.655.132
Google Scholar
[2]
R.B. Fair, Digital microfluidics: is a true lab-on-a-chip possible? Microfluidics & Nanofluidics 3.3(2007):245-281.
DOI: 10.1007/s10404-007-0161-8
Google Scholar
[3]
L. Zhang, J.J. Mei, B.W. Yan, et al. A Test Droplets Dispensing Solution for Digital Microfluidic Biochip Parallel Testing. Key Engineering Materials 609-610(2014):670-674.
DOI: 10.4028/www.scientific.net/kem.609-610.670
Google Scholar
[4]
S. Paul, H. Moon. Separation of binary solution by liquid-liquid microextraction on EWOD digital microfluidics. IEEE, International Conference on Nano/micro Engineered and Molecular Systems IEEE, 2017:342-345.
DOI: 10.1109/nems.2017.8017038
Google Scholar
[5]
Y. Guan, A.Y. Tong, N.Y.J.B. Nikapitiya, et al. Numerical modeling of microscale droplet dispensing in parallel-plate electrowetting-on-dielectric (EWOD) devices with various reservoir designs. Microfluidics & Nanofluidics 20.2(2016):39.
DOI: 10.1007/s10404-016-1703-8
Google Scholar
[6]
C. Dong, Y. Gao, Y. Chen, et al. A 3D microblade structure for precise and parallel droplet splitting on digital microfluidic chips. Lab on A Chip 17.5(2017):896.
DOI: 10.1039/c6lc01539e
Google Scholar
[7]
J.Q. Niu, Z.K. Xie, Z.X. Yue and W.Q. Wang. Using Ferroelectric Thin Film as the Dielectric for Electrowetting-on- Dielectric. Key Engineering Materials 697(2016):227-230.
DOI: 10.4028/www.scientific.net/kem.697.227
Google Scholar
[8]
H.F. Zhang, X.W. Liu, M. Zhao, et al. Fabrication of Super-Hydrophobic Surface on Stainless Steel Using Chemical Etching Method. Key Engineering Materials 562-565(2013):33-38.
DOI: 10.4028/www.scientific.net/kem.562-565.33
Google Scholar
[9]
E. N. Abdul Latip, L. Coudron, M. B. Mcdonnell, et al. Protein droplet actuation on superhydro- phobic surfaces: a new approach toward anti-biofouling electrowetting systems. Rsc Advances 7.78(2017):49633-49648.
DOI: 10.1039/c7ra10920b
Google Scholar
[10]
A.B.D. Cassie. Contact angles. Discussions of the Faraday Society 3.5(1948):11-16.
Google Scholar
[11]
R.N. Wenzel. Surface Roughness and Contact Angle. Journal of Physical & Colloid Chemistry 53.9(1949):1466-1467.
DOI: 10.1021/j150474a015
Google Scholar
[12]
V. Bahadur, S.V. Garimella. Electrowetting-based control of static droplet states on rough surfaces. Langmuir 23.9 (2007): 4918-4924.
DOI: 10.1021/la0631365
Google Scholar
[13]
H. Rong, J. Wei and X. Chen. Study on Fabrication Process of SU8 Photoresist Microstructures and Evaluation of Stress Gradient. Key Engineering Materials 609-610.1(2014):740-744.
DOI: 10.4028/www.scientific.net/kem.609-610.740
Google Scholar
[14]
M. Talebi, K Cobry, A. Sengupta, et al. Transparent Glass/SU8-Based Microfluidic Device with on-Channel Electrical Sensors. 1.4(2017):336.
DOI: 10.3390/proceedings1040336
Google Scholar
[15]
A.A. Kim, K. Kustanovich, D. Baratian, et al. SU-8 free-standing microfluidic probes. Biomicrofluidics 11.1(2017):014112.
DOI: 10.1063/1.4975026
Google Scholar
[16]
N.A. Ramli, T. Arslan, N. Haridas, et al. Design, simulation and analysis of a digital RF MEMS varactor using thick SU-8 polymer. Microsystem Technologies 9(2017):1-10.
DOI: 10.1007/s00542-017-3371-3
Google Scholar
[17]
V. Bahadur, S.V. Garimella. Electrowetting-Based Control of Droplet Transition and Morphology on Artificially Microstructured Surfaces. Langmuir the Acs Journal of Surfaces & Colloids 24.15(2008):8338.
DOI: 10.1021/la800556c
Google Scholar
[18]
W.Q. Wang, J.Q. Niu, Z.K. Xie, et al. Dielectric Breakdown and Failure of Ferroelectric Films as the Dielectric for Electrowetting Systems. Key Engineering Materials 697 (2016): 231.
DOI: 10.4028/www.scientific.net/kem.697.231
Google Scholar