[1]
Y. Wang, Q. Liu, J. Wu, D. Xiao, J. Zhu, Piezoelectric properties of (1-x)(Na0.5K0.5)NbO3-xAgSbO3 lead-free ceramics, J. Am. Ceram. Soc. 3 (2009) 755-757.
Google Scholar
[2]
X. Lv, J. Wu, S. Yang, et al., Identification of phase boundaries and electrical properties in ternary potassium-sodium niobate-based ceramics, ACS Appl. Mater. Interfaces. 29 (2016) 18943-18953.
DOI: 10.1021/acsami.6b04288
Google Scholar
[3]
M. Kroutvar, Y. Ducommun, D. Heiss, M. Bichler, D. Schuh, G. Abstreiter, and J. J. Finley, Lead-free piezoceramics, Nature. 7013 (2004) 84-87.
DOI: 10.1038/nature03008
Google Scholar
[4]
Y. Hao, X. Wang, H. Zhang, Y. Zhang, L. Li, C. A. Randall, A novel approach to the preparation of a highly crystallized BaTiO3 layer on Ni Nanoparticles, J. Am. Ceram. Soc. 9 (2013) 2696-2698.
DOI: 10.1111/jace.12506
Google Scholar
[5]
Y. Sakabe, Kiichi Minai, Kikuo Wakino, High-dielectric constant ceramics for base metal monolithic capacitors, Jpn. J. Appl. Phys. S4 (1981) 147-150.
DOI: 10.7567/jjaps.20s4.147
Google Scholar
[6]
I. Burn, G. H. Maher, High resistivity BaTiO3 ceramics sintered in CO-CO2 atmospheres, J. Mater. Sci. 4 (1975) 633-40.
DOI: 10.1007/bf00566571
Google Scholar
[7]
S. Kawada, M. Kimura, Y. Higuchi, H. Takagi, (K,Na)NbO3-based multilayer piezoelectric ceramics with nickel inner electrodes, Appl. Phys. Express. 11 (2009) 111401.
DOI: 10.1143/apex.2.111401
Google Scholar
[8]
H. Ishii, S. Kawada, S. Suzuki, et al., Piezoelectric properties of Sn-doped (K,Na)NbO3 ceramics, Jpn. J. Appl. Phys. 9S1 (2013) 09KD06.
DOI: 10.7567/jjap.52.09kd06
Google Scholar
[9]
C. Liu, P. Liu, K. Kobayashi, C. A. Randall, Base metal Co-fired (Na,K)NbO3 structures with enhanced piezoelectric performance,J. Electroceram. 4 (2014) 301-306.
DOI: 10.1007/s10832-014-9899-z
Google Scholar
[10]
K. Kobayashi, Y. Doshida, Y. Mizuno, and C. A. Randall, Possibility of cofiring a nickel inner electrode in a (Na0.5K0.5)NbO3-LiF piezoelectric actuator, Jpn. J. Appl. Phys. 9S1 (2013) 09KD07.
DOI: 10.7567/jjap.52.09kd07
Google Scholar
[11]
X. W. Yu Huan, Tao Wei, Peiyao Zhao, Jing Xie, Zifan Ye, Longtu Li, Defect control for enhanced piezoelectric properties in SnO2 and ZrO2 co-modified KNN ceramics fired under reducing atmosphere, J. Eur. Ceram. Soc. 37 (2016) 2057-(2065).
DOI: 10.1016/j.jeurceramsoc.2016.12.040
Google Scholar
[12]
W. X. Huan Y, Wei T, and Y. Z. Xie J, Zhao P, Li L, Defect engineering of high-performance potassium sodium niobate piezoelectric ceramics sintered in reducing atmosphere, J. Am. Ceram. Soc. 100 (2017) 2024-(2033).
DOI: 10.1111/jace.14721
Google Scholar
[13]
J.-X. Gao, X.-H. Wang, M.-J. Wang, X.-C. Wang, W.-Z. Lu, Influence of MnCO3 additive on the dielectric properties of BaCuB2O5-doped Ba4.5(Nd0.7Sm0.3)9Ti18O54 ceramics sintered in a reducing atmosphere, J. Mater Sci: Mater. El. 6 (2016) 5954-5959.
DOI: 10.1007/s10854-016-4516-3
Google Scholar
[14]
H. Ichikawa, W. Sakamoto, Y. Akiyama, H. Maiwa, M. Moriya, T. Yogo, Fabrication and characterization of (100),(001)-oriented reduction-resistant lead-free piezoelectric (Ba,Ca)TiO3 ceramics using platelike seed crystals, Jpn. J. Appl. Phys. 9S1 (2013).
DOI: 10.7567/jjap.52.09kd08
Google Scholar
[15]
S.-H. Yoon, C. A. Randall, K.-H. Hur, Difference between resistance degradation of fixed valence acceptor (Mg) and variable valence acceptor (Mn)-doped BaTiO3 ceramics, J. Appl. Phys. 6 (2010) 064101.
DOI: 10.1063/1.3480992
Google Scholar
[16]
N. O. Andrei Kirianov, Hitoshi Ohsato, Noriyuki Kohzu and Hiroshi Kishi, Studies on the solid solution of Mn in BaTiO3, Jpn. J. Appl. Phys. 9B (2001) 5619 -5623.
DOI: 10.1143/jjap.40.5619
Google Scholar
[17]
C. Hofer, R. Meyer, U. Böttger, R. Waser, Characterization of Ba(Ti,Zr)O3 ceramics sintered under reducing conditions, J. Eur. Ceram. Soc. 6 (2004) 1473-77.
DOI: 10.1016/s0955-2219(03)00573-9
Google Scholar
[18]
T. Zheng, J. Wu, X. Cheng, et al., Wide phase boundary zone, piezoelectric properties, and stability in 0.97(K0.4Na0.6)(Nb1-xSbx)O3-0.03Bi0.5Li0.5ZrO3 lead-free ceramics, Dalton transactions. 25 (2014) 9419-9426.
DOI: 10.1039/c4dt00768a
Google Scholar
[19]
Q. Gou, D.-Q. Xiao, B. Wu, et al., New (1-x)K0.5Na0.5NbO3-x(0.15Bi0.5Na0.5TiO3-0.85Bi0.5Na0.5ZrO3) ternary lead-free ceramics: microstructure and electrical properties, RSC. Adv. 39 (2015) 30660-30666.
DOI: 10.1007/s12034-007-0090-x
Google Scholar
[20]
X. Wang, J. Wu, D. Xiao, et al., Giant piezoelectricity in potassium-sodium niobate lead-free ceramics, J. Am. Chem. Soc. 7 (2014) 2905-2910.
DOI: 10.1021/ja500076h
Google Scholar
[21]
Z.-Y. Shen, Y. Zhen, K. Wang, J.-F. Li, Influence of sintering temperature on grain growth and phase structure of compositionally optimized high-performance Li/Ta-modified (Na,K)NbO3 ceramics, J. Am. Ceram. Soc. 8 (2009) 1748-1752.
DOI: 10.1111/j.1551-2916.2009.03128.x
Google Scholar
[22]
S.-T. Zhang, A. B. Kounga, E. Aulbach, H. Ehrenberg, J. Rödel, Giant strain in lead-free piezoceramics Bi0.5Na0.5TiO3-BaTiO3-K0.5Na0.5NbO3 system, Appl. Phys. Lett. 11 (2007) 112906.
DOI: 10.1063/1.2783200
Google Scholar