High Piezoelectric Properties and High TC in KNN-Based Lead-Free Ceramics Sintered in Reducing Atmosphere

Article Preview

Abstract:

Lead-free MnO doped 0.955K0.5Na0.5NbO3-0.045Bi0.5Na0.5ZrO3 (abbreviate as KNN-0.045BNZ) ceramics have been prepared by a conventional solid-state sintering method in a reducing atmosphere. The addition of MnO suppresses grain growth and eliminates the liquid phase. MnO dopant changes the crystalline structures of KNN-0.045BNZ ceramics from the classical Morphotropic Phase Boundary (MPB) with rhombohedral phase (R) and tetragonal phase (T) to the suppressed MPB with R/T phase. The 0.4% MnO doped KNN-0.045BNZ ceramics show an excellent electrical properties with quasi static piezoelectric constant d33=300 pC/N, Curie temperature TC = 350 °C, insulation resistivity ρ=4.83 × 1011 (Ω・cm), and high field piezoelectric constants =438 pm/V (at Emax = 25 kV/cm). The results indicate that the 0.4%Mn doped KNN-0.045BNZ ceramic is a promising lead-free piezoelectric candidate material for commercial applications.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 281)

Pages:

628-633

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Wang, Q. Liu, J. Wu, D. Xiao, J. Zhu, Piezoelectric properties of (1-x)(Na0.5K0.5)NbO3-xAgSbO3 lead-free ceramics, J. Am. Ceram. Soc. 3 (2009) 755-757.

Google Scholar

[2] X. Lv, J. Wu, S. Yang, et al., Identification of phase boundaries and electrical properties in ternary potassium-sodium niobate-based ceramics, ACS Appl. Mater. Interfaces. 29 (2016) 18943-18953.

DOI: 10.1021/acsami.6b04288

Google Scholar

[3] M. Kroutvar, Y. Ducommun, D. Heiss, M. Bichler, D. Schuh, G. Abstreiter, and J. J. Finley, Lead-free piezoceramics, Nature. 7013 (2004) 84-87.

DOI: 10.1038/nature03008

Google Scholar

[4] Y. Hao, X. Wang, H. Zhang, Y. Zhang, L. Li, C. A. Randall, A novel approach to the preparation of a highly crystallized BaTiO3 layer on Ni Nanoparticles, J. Am. Ceram. Soc. 9 (2013) 2696-2698.

DOI: 10.1111/jace.12506

Google Scholar

[5] Y. Sakabe, Kiichi Minai, Kikuo Wakino, High-dielectric constant ceramics for base metal monolithic capacitors, Jpn. J. Appl. Phys. S4 (1981) 147-150.

DOI: 10.7567/jjaps.20s4.147

Google Scholar

[6] I. Burn, G. H. Maher, High resistivity BaTiO3 ceramics sintered in CO-CO2 atmospheres, J. Mater. Sci. 4 (1975) 633-40.

DOI: 10.1007/bf00566571

Google Scholar

[7] S. Kawada, M. Kimura, Y. Higuchi, H. Takagi, (K,Na)NbO3-based multilayer piezoelectric ceramics with nickel inner electrodes, Appl. Phys. Express. 11 (2009) 111401.

DOI: 10.1143/apex.2.111401

Google Scholar

[8] H. Ishii, S. Kawada, S. Suzuki, et al., Piezoelectric properties of Sn-doped (K,Na)NbO3 ceramics, Jpn. J. Appl. Phys. 9S1 (2013) 09KD06.

DOI: 10.7567/jjap.52.09kd06

Google Scholar

[9] C. Liu, P. Liu, K. Kobayashi, C. A. Randall, Base metal Co-fired (Na,K)NbO3 structures with enhanced piezoelectric performance,J. Electroceram. 4 (2014) 301-306.

DOI: 10.1007/s10832-014-9899-z

Google Scholar

[10] K. Kobayashi, Y. Doshida, Y. Mizuno, and C. A. Randall, Possibility of cofiring a nickel inner electrode in a (Na0.5K0.5)NbO3-LiF piezoelectric actuator, Jpn. J. Appl. Phys. 9S1 (2013) 09KD07.

DOI: 10.7567/jjap.52.09kd07

Google Scholar

[11] X. W. Yu Huan, Tao Wei, Peiyao Zhao, Jing Xie, Zifan Ye, Longtu Li, Defect control for enhanced piezoelectric properties in SnO2 and ZrO2 co-modified KNN ceramics fired under reducing atmosphere, J. Eur. Ceram. Soc. 37 (2016) 2057-(2065).

DOI: 10.1016/j.jeurceramsoc.2016.12.040

Google Scholar

[12] W. X. Huan Y, Wei T, and Y. Z. Xie J, Zhao P, Li L, Defect engineering of high-performance potassium sodium niobate piezoelectric ceramics sintered in reducing atmosphere, J. Am. Ceram. Soc. 100 (2017) 2024-(2033).

DOI: 10.1111/jace.14721

Google Scholar

[13] J.-X. Gao, X.-H. Wang, M.-J. Wang, X.-C. Wang, W.-Z. Lu, Influence of MnCO3 additive on the dielectric properties of BaCuB2O5-doped Ba4.5(Nd0.7Sm0.3)9Ti18O54 ceramics sintered in a reducing atmosphere, J. Mater Sci: Mater. El. 6 (2016) 5954-5959.

DOI: 10.1007/s10854-016-4516-3

Google Scholar

[14] H. Ichikawa, W. Sakamoto, Y. Akiyama, H. Maiwa, M. Moriya, T. Yogo, Fabrication and characterization of (100),(001)-oriented reduction-resistant lead-free piezoelectric (Ba,Ca)TiO3 ceramics using platelike seed crystals, Jpn. J. Appl. Phys. 9S1 (2013).

DOI: 10.7567/jjap.52.09kd08

Google Scholar

[15] S.-H. Yoon, C. A. Randall, K.-H. Hur, Difference between resistance degradation of fixed valence acceptor (Mg) and variable valence acceptor (Mn)-doped BaTiO3 ceramics, J. Appl. Phys. 6 (2010) 064101.

DOI: 10.1063/1.3480992

Google Scholar

[16] N. O. Andrei Kirianov, Hitoshi Ohsato, Noriyuki Kohzu and Hiroshi Kishi, Studies on the solid solution of Mn in BaTiO3, Jpn. J. Appl. Phys. 9B (2001) 5619 -5623.

DOI: 10.1143/jjap.40.5619

Google Scholar

[17] C. Hofer, R. Meyer, U. Böttger, R. Waser, Characterization of Ba(Ti,Zr)O3 ceramics sintered under reducing conditions, J. Eur. Ceram. Soc. 6 (2004) 1473-77.

DOI: 10.1016/s0955-2219(03)00573-9

Google Scholar

[18] T. Zheng, J. Wu, X. Cheng, et al., Wide phase boundary zone, piezoelectric properties, and stability in 0.97(K0.4Na0.6)(Nb1-xSbx)O3-0.03Bi0.5Li0.5ZrO3 lead-free ceramics, Dalton transactions. 25 (2014) 9419-9426.

DOI: 10.1039/c4dt00768a

Google Scholar

[19] Q. Gou, D.-Q. Xiao, B. Wu, et al., New (1-x)K0.5Na0.5NbO3-x(0.15Bi0.5Na0.5TiO3-0.85Bi0.5Na0.5ZrO3) ternary lead-free ceramics: microstructure and electrical properties, RSC. Adv. 39 (2015) 30660-30666.

DOI: 10.1007/s12034-007-0090-x

Google Scholar

[20] X. Wang, J. Wu, D. Xiao, et al., Giant piezoelectricity in potassium-sodium niobate lead-free ceramics, J. Am. Chem. Soc. 7 (2014) 2905-2910.

DOI: 10.1021/ja500076h

Google Scholar

[21] Z.-Y. Shen, Y. Zhen, K. Wang, J.-F. Li, Influence of sintering temperature on grain growth and phase structure of compositionally optimized high-performance Li/Ta-modified (Na,K)NbO3 ceramics, J. Am. Ceram. Soc. 8 (2009) 1748-1752.

DOI: 10.1111/j.1551-2916.2009.03128.x

Google Scholar

[22] S.-T. Zhang, A. B. Kounga, E. Aulbach, H. Ehrenberg, J. Rödel, Giant strain in lead-free piezoceramics Bi0.5Na0.5TiO3-BaTiO3-K0.5Na0.5NbO3 system, Appl. Phys. Lett. 11 (2007) 112906.

DOI: 10.1063/1.2783200

Google Scholar