[1]
Y Lu, H Hao, S Zhang, H Liu, C Su, Z Yao, M Cao. Microstructure and dielectric characteristics of Nb2O5 doped BaTiO3-Bi(Znl/2Til/2)O3 ceramics for capacitor applications. Journal of the European Ceramic Society, 2017. 37(1): 123-128.
DOI: 10.1016/j.jeurceramsoc.2016.08.003
Google Scholar
[2]
B Zhang, L Li. The relationship between the micro-mechanism and macroscopic dielectric properties in Ba1−xBixTi1−x−yZn0.75xW0.25x+yO3+y systems. Ceramics International, 2016. 42(11): 12843-12852.
DOI: 10.1016/j.ceramint.2016.05.049
Google Scholar
[3]
Y Wang, Y Pu, H Zheng, Q Jin, Z Gao. Enhanced dielectric relaxation in (1−x)BaTiO3–xBiYO3 ceramics. Materials Letters, 2016. 181: 358-361.
DOI: 10.1016/j.matlet.2016.04.174
Google Scholar
[4]
S U Jan, A Zeb, S J Milne. Dielectric ceramic with stable relative permittivity and low loss from −60 to 300 °C: A potential high temperature capacitor material. Journal of the European Ceramic Society, 2016. 36(11): 2713-2718.
DOI: 10.1016/j.jeurceramsoc.2016.03.018
Google Scholar
[5]
N Zhang, L Li, J Yu. High dielectric constant and good thermal stability from −55 °C to 450 °C in BaTiO3-based ceramics. Materials Letters, 2015. 160: 128-131.
DOI: 10.1016/j.matlet.2015.07.106
Google Scholar
[6]
Z B Shen, X H Wang, D S Song, L T Li. Nb-doped BaTiO3-(Bi0.5Na0.5)TiO3 ceramics with core-shell structure for high-temperature dielectric applications. Advances in Applied Ceramics, 2016. 115(7): 435-442.
DOI: 10.1080/17436753.2016.1181814
Google Scholar
[7]
I W Chen, X H Wang. Sintering dense nanocrystalline ceramics without final-stage grain growth. Nature, 2000. 404(6774): 168-171.
DOI: 10.1038/35004548
Google Scholar
[8]
Z Tian, X Wang, S Lee, K H Hur, L Li. Microstructure Evolution and Dielectric Properties of Ultrafine Grained BaTiO3-Based Ceramics by Two-Step Sintering. Journal of the American Ceramic Society, 2011. 94(4): 1119-1124.
DOI: 10.1111/j.1551-2916.2010.04234.x
Google Scholar
[9]
Y Huan, X Wang, J Fang, L Li, I W Chen. Grain Size Effects on Piezoelectric Properties and Domain Structure of BaTiO3 Ceramics Prepared by Two-Step Sintering. Journal of the American Ceramic Society, 2013. 96(11): 3369-3371.
DOI: 10.1111/jace.12601
Google Scholar
[10]
J Ding, Y Liu, Y Lu, H Qian, H Gao, H Chen, C Ma. Enhanced energy-storage properties of 0.89Bi0.5Na0.5TiO3–0.06BaTiO3–0.05K0.5Na0.5NbO3 lead-free anti-ferroelectric ceramics by two-step sintering method. Materials Letters, 2014. 114: 107-110.
DOI: 10.1016/j.matlet.2013.09.103
Google Scholar
[11]
S Zhang, X Wang, H Wang, L Li. Grain boundary region and local piezoelectric response of BiScO3–PbTiO3 nanoceramics prepared by combination of SPS and two-step sintering. Journal of the European Ceramic Society, 2014. 34(10): 2317-2323.
DOI: 10.1016/j.jeurceramsoc.2014.02.038
Google Scholar
[12]
Q Zhao, H Gong, X Wang, I W Chen, L Li. Superior Reliability Via Two-Step Sintering: Barium Titanate Ceramics. Journal of the American Ceramic Society, 2016. 99(1): 191-197.
DOI: 10.1111/jace.13940
Google Scholar
[13]
T I Prokopowicz, A R Vaskas. Research and Development Intrinsic Reliability Subminiature Ceramic Capacitors. (1969).
DOI: 10.21236/ad0839624
Google Scholar
[14]
T Kobayashi, H Ariyoshi, A Masuda. Reliability Evaluation and Failure Analysis for Multilayer Ceramic Chip Capacitors. IEEE Transactions on Components Hybrids & Manufacturing Technology, 1978. 1(3): 316-324.
DOI: 10.1109/tchmt.1978.1135275
Google Scholar
[15]
W J Minford. Accelerated Life Testing and Reliability of High K Multilayer Ceramic Capacitors. IEEE Transactions on Components Hybrids & Manufacturing Technology, 1981. 5(3): 297-300.
DOI: 10.1109/tchmt.1982.1135974
Google Scholar
[16]
B S Rawal, N H Chan. Conduction and Failure Mechanisms in Barium Titanate Based Ceramics under Highly Accelerated Conditions. (1984).
Google Scholar
[17]
R Munikoti, P Dhar. Highly accelerated life testing (HALT) for multilayer ceramic capacitor qualification. Components Hybrids & Manufacturing Technology IEEE Transactions on, 1988. 11(4): 342-345.
DOI: 10.1109/33.16665
Google Scholar