Dielectric Breakdown Strength and Microwave Dielectric Properties of Alumina Ceramics with CaO-SiO2- MgO, Yb2O3 and ZrO2 Additives

Article Preview

Abstract:

Al2O3 ceramics with CaO-SiO2-MgO (CMS), Yb2O3 and ZrO2 additives were fabricated by a conventional solid-state reaction method. The effects of ZrO2 dopant on phase compositions, microwave dielectric properties and dielectric breakdown strength of Al2O3 ceramics were studied. XRD demonstrated that CaAl2Si2O8 and Zr &Y compound phases co-existed with alumina. SEM exhibited that ZrO2 dopant could refine the grain of alumina ceramics and improve its relative density. With ZrO2 content increasing from 1wt% to 5wt% εr increased from 9.8 to 10.25, but Q×f decreased from 52823GHz to 35922GHz. The breakdown strength increased initially and reached the maximum value at ZrO2=3wt%. When ZrO2 content is 3wt%, the comprehensive performances were the best: Eb= 37.37kV/mm for 1mm samples and 17.26kV/mm for 3mm samples, Q×f = 37044 GHz, εr = 10.01, and τf = -52 ppm/°C.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 281)

Pages:

640-645

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.P. Goswami, S. Roy, G.C. Das, Effect of powder, chemistry and morphology on the dielectric properties of liquid-phase-sinted alumina. Ceram. Int. 28 (2002) 439-445.

DOI: 10.1016/s0272-8842(01)00116-x

Google Scholar

[2] Z. Wang, Y. Cheng, H. Wang, et al. Sandwiched epoxy–alumina composites with synergistically enhanced thermal conductivity and breakdown strength, J. Mater. Sci. 52 (2017) 4299-4308.

DOI: 10.1007/s10853-016-0511-6

Google Scholar

[3] X. Li, M. Gao, Y. Jiang, Microstructure and mechanical properties of porous alumina ceramic prepared by a combination of 3–D printing and sintering, Ceram. Int. 42 (2016) 12531-12535.

DOI: 10.1016/j.ceramint.2016.05.027

Google Scholar

[4] J.G. Song, R.H. Wang, X.Q. Wang, et al. Preparation of superfine alumina powders via hydrothermal method, Key Eng. Mater. 726 (2017) 184-188.

DOI: 10.4028/www.scientific.net/kem.726.184

Google Scholar

[5] W.D. Kingery, H.K. Bowen, D. R. Uhlmann, Introduction to ceramics, 2nd ed., Wily, New York, (1976).

Google Scholar

[6] Y. Saito, Surface breakdown phenomena in alumina rf windows, IEEE T. Dielect. El. In. 2 (1995) 243-250.

DOI: 10.1109/94.388247

Google Scholar

[7] T. Tepper, S. Berger, Correlation between microstructure, particle size, dielectric constant and electrical resisitivity of nano-size amorphous SiO2 powder, Nanostruct. Mater. 11 (1999) 1081-1089.

DOI: 10.1016/s0965-9773(99)00398-0

Google Scholar

[8] S.J. Penn, N.M. Alford, A. Templeton, et al., Effect of porosity and grain size on the microwave dielectric properties of sintered alumina, J. Am. Ceram. Soc. 80 (1997) 1885-1888.

DOI: 10.1111/j.1151-2916.1997.tb03066.x

Google Scholar

[9] R. Vila, M. González, J. Mollá, A. Obarra, Dielectric spectros-copy of alumina ceramics over a wide frequency range, J. Nucl. Mater. 253 (1998) 141-148.

DOI: 10.1016/s0022-3115(97)00308-5

Google Scholar

[10] S. Li, Y. Zhu, D. Min, et al. Space charge modulated electrical breakdown, Sci. Rep. 6 (2016) 32588.

Google Scholar

[11] J. Liebault, J. Vallayer, D. Goeuriot, et al. How the trapping of charges can explain the dielectric breakdown performance of alumina ceramics, J. Eur. Ceram. Soc. 21 (2002) 389-397.

DOI: 10.1016/s0955-2219(00)00186-2

Google Scholar

[12] M. Touzin, D. Goeuriot, C. Guerret-Piecourt, et al. Alumina based ceramics for high-voltage insulation, J. Eur. Ceram. Soc. 30 (2010) 805-17.

DOI: 10.1016/j.jeurceramsoc.2009.09.025

Google Scholar

[13] A.S. Ahmed, J. Kansy, K. Zarbout, et al. Microstructural origin of the dielectric breakdown strength in alumina: a study by positron lifetime spectroscopy, J. Eur. Ceram. Soc. 25 (2005) 2813-2816.

DOI: 10.1016/j.jeurceramsoc.2005.03.146

Google Scholar

[14] M. Touzin, D. Goeuriot, H.J. Fitting, et al. Relationships between dielectric breakdown resistance and charge transport in alumina materials-effects of the microstructure, J. Eur. Ceram. Soc. 27 (2007) 1193-1197.

DOI: 10.1016/j.jeurceramsoc.2006.05.047

Google Scholar

[15] H. Wang, W. Li, C. Ternstrom, et al. Effect of Mg doping on microwave dielectric properties of translucent polycrystalline alumina ceramic, Ceram. Int. 39 (2013) 4907-(1911).

DOI: 10.1016/j.ceramint.2012.11.084

Google Scholar

[16] H. Wang, H. Lin, W. Li, et al. Effect of La doping on microwave dielectric properties of translucent polycrystalline alumina ceramic, Ceram. Int. 39 (2013) 4907-4911.

DOI: 10.1016/j.ceramint.2012.11.084

Google Scholar

[17] H. Tamura, Microwave dielectric losses caused by lattice defects. J. Eur. Ceram. Soc. 26 (2006) 1775-1780.

Google Scholar

[18] B. Ullah, W. Lei, Q.S. Cao, et al. Structure and microwave dielectric behavior of A‐Site‐Doped Sr(1−1.5x)CexTiO3 ceramics system, J. Am. Ceram. Soc. 99 (2016) 3286-3292.

DOI: 10.1111/jace.14341

Google Scholar

[19] R. Freer, F. Azough, Microstructual engineering of microwave dielectric ceramics, J. Eur. Ceram. Soc. 28 (2008) 1433-1441.

Google Scholar