[1]
A.P. Goswami, S. Roy, G.C. Das, Effect of powder, chemistry and morphology on the dielectric properties of liquid-phase-sinted alumina. Ceram. Int. 28 (2002) 439-445.
DOI: 10.1016/s0272-8842(01)00116-x
Google Scholar
[2]
Z. Wang, Y. Cheng, H. Wang, et al. Sandwiched epoxy–alumina composites with synergistically enhanced thermal conductivity and breakdown strength, J. Mater. Sci. 52 (2017) 4299-4308.
DOI: 10.1007/s10853-016-0511-6
Google Scholar
[3]
X. Li, M. Gao, Y. Jiang, Microstructure and mechanical properties of porous alumina ceramic prepared by a combination of 3–D printing and sintering, Ceram. Int. 42 (2016) 12531-12535.
DOI: 10.1016/j.ceramint.2016.05.027
Google Scholar
[4]
J.G. Song, R.H. Wang, X.Q. Wang, et al. Preparation of superfine alumina powders via hydrothermal method, Key Eng. Mater. 726 (2017) 184-188.
DOI: 10.4028/www.scientific.net/kem.726.184
Google Scholar
[5]
W.D. Kingery, H.K. Bowen, D. R. Uhlmann, Introduction to ceramics, 2nd ed., Wily, New York, (1976).
Google Scholar
[6]
Y. Saito, Surface breakdown phenomena in alumina rf windows, IEEE T. Dielect. El. In. 2 (1995) 243-250.
DOI: 10.1109/94.388247
Google Scholar
[7]
T. Tepper, S. Berger, Correlation between microstructure, particle size, dielectric constant and electrical resisitivity of nano-size amorphous SiO2 powder, Nanostruct. Mater. 11 (1999) 1081-1089.
DOI: 10.1016/s0965-9773(99)00398-0
Google Scholar
[8]
S.J. Penn, N.M. Alford, A. Templeton, et al., Effect of porosity and grain size on the microwave dielectric properties of sintered alumina, J. Am. Ceram. Soc. 80 (1997) 1885-1888.
DOI: 10.1111/j.1151-2916.1997.tb03066.x
Google Scholar
[9]
R. Vila, M. González, J. Mollá, A. Obarra, Dielectric spectros-copy of alumina ceramics over a wide frequency range, J. Nucl. Mater. 253 (1998) 141-148.
DOI: 10.1016/s0022-3115(97)00308-5
Google Scholar
[10]
S. Li, Y. Zhu, D. Min, et al. Space charge modulated electrical breakdown, Sci. Rep. 6 (2016) 32588.
Google Scholar
[11]
J. Liebault, J. Vallayer, D. Goeuriot, et al. How the trapping of charges can explain the dielectric breakdown performance of alumina ceramics, J. Eur. Ceram. Soc. 21 (2002) 389-397.
DOI: 10.1016/s0955-2219(00)00186-2
Google Scholar
[12]
M. Touzin, D. Goeuriot, C. Guerret-Piecourt, et al. Alumina based ceramics for high-voltage insulation, J. Eur. Ceram. Soc. 30 (2010) 805-17.
DOI: 10.1016/j.jeurceramsoc.2009.09.025
Google Scholar
[13]
A.S. Ahmed, J. Kansy, K. Zarbout, et al. Microstructural origin of the dielectric breakdown strength in alumina: a study by positron lifetime spectroscopy, J. Eur. Ceram. Soc. 25 (2005) 2813-2816.
DOI: 10.1016/j.jeurceramsoc.2005.03.146
Google Scholar
[14]
M. Touzin, D. Goeuriot, H.J. Fitting, et al. Relationships between dielectric breakdown resistance and charge transport in alumina materials-effects of the microstructure, J. Eur. Ceram. Soc. 27 (2007) 1193-1197.
DOI: 10.1016/j.jeurceramsoc.2006.05.047
Google Scholar
[15]
H. Wang, W. Li, C. Ternstrom, et al. Effect of Mg doping on microwave dielectric properties of translucent polycrystalline alumina ceramic, Ceram. Int. 39 (2013) 4907-(1911).
DOI: 10.1016/j.ceramint.2012.11.084
Google Scholar
[16]
H. Wang, H. Lin, W. Li, et al. Effect of La doping on microwave dielectric properties of translucent polycrystalline alumina ceramic, Ceram. Int. 39 (2013) 4907-4911.
DOI: 10.1016/j.ceramint.2012.11.084
Google Scholar
[17]
H. Tamura, Microwave dielectric losses caused by lattice defects. J. Eur. Ceram. Soc. 26 (2006) 1775-1780.
Google Scholar
[18]
B. Ullah, W. Lei, Q.S. Cao, et al. Structure and microwave dielectric behavior of A‐Site‐Doped Sr(1−1.5x)CexTiO3 ceramics system, J. Am. Ceram. Soc. 99 (2016) 3286-3292.
DOI: 10.1111/jace.14341
Google Scholar
[19]
R. Freer, F. Azough, Microstructual engineering of microwave dielectric ceramics, J. Eur. Ceram. Soc. 28 (2008) 1433-1441.
Google Scholar