[1]
A. Sayyadi-Shahraki, E. Taheri-Nassaj, H. Sharifi, et al. Origin of dielectric loss in Ba(Co1/3Nb2/3)O3 microwave ceramics, J Am Ceram Soc 101 (2018) 1665-1676.
DOI: 10.1111/jace.15343
Google Scholar
[2]
X. Y. Yang, H. Y. Wu, X. H Wang, et al. Two-step sintering: An approach to prepare Ba(Zn1/3Nb2/3)O3 ceramics with high degree of cation ordering, J Alloy Compd 723 (2017) 930-935.
DOI: 10.1016/j.jallcom.2017.06.323
Google Scholar
[3]
Y. Q. Zhang, X. H. Zhou, X. S. Yang, et al. Effects of Y2O3/CeO2 co-doping on microwave dielectric properties of Ba(Co0.6Zn0.38)1/3Nb2/3O3 ceramics, J Alloy Compd 679 (2016) 247-253.
DOI: 10.1016/j.jallcom.2016.04.009
Google Scholar
[4]
M. T. Sebastian, H. Jantunen. Low loss dielectric materials for LTCC applications: a review, Int Mater Rev 53 (2008) 57-90.
DOI: 10.1179/174328008x277524
Google Scholar
[5]
C. L. Huang, Y. H. Chien, C. F. Shih, et al. Crystal structure and dielectric properties of xCa(Mg1/3Nb2/3)O3–(1−x)(Ca0.61Nd0.26)TiO3 at the microwave frequency, Mater Res Bull 63 (2015) 1-5.
DOI: 10.1016/j.materresbull.2014.11.038
Google Scholar
[6]
J. E. F. S. Rodrigues, M. B. Debora, A. P. Maciel, et al. Structural ordering and dielectric properties of Ba3CaNb2O9-based microwave ceramics, Ceram Int 42 (2016) 18087-18093.
DOI: 10.1016/j.ceramint.2016.08.113
Google Scholar
[7]
T. Kolodiazhnyi. Origin of extrinsic dielectric loss in 1:2 ordered single-phase BaMg1/3Ta2/3O3, J Eur Ceram Soc 34 (2014) 1741-1753.
DOI: 10.1016/j.jeurceramsoc.2013.12.037
Google Scholar
[8]
P. P. Ma, L. Yi, X. Q. Liu, et al. Effects of postdensification annealing upon microstructures and microwave dielectric characteristics in Ba((Co0.6−x/2Zn0.4−x/2Mgx)1/3Nb2/3)O3 ceramics, J Am Ceram Soc 96 (2013) 3417-3424.
DOI: 10.1111/jace.12486
Google Scholar
[9]
M. S. Fu, X. Q. Liu, X. M. Chen. Effects of Mg substitution on microstructures and microwave dielectric properties of Ba(Zn1/3Nb2/3)O3 perovskite ceramics, J Am Ceram Soc 93 (2010) 787-795.
DOI: 10.1111/j.1551-2916.2009.03459.x
Google Scholar
[10]
P. P. Ma, H. Gu, X. M. Chen. Determination of 1:2 ordered domain boundaries in Ba[(Co, Zn, Mg)1/3Nb2/3]O3 dielectric ceramics, J Am Ceram Soc 99 (2016) 1299-1304.
DOI: 10.1111/jace.14107
Google Scholar
[11]
C. W. Ahn, H. J. Janga, S. Nahm et al. Effects of microstructure on the microwave dielectric properties of Ba(Co1/3Nb2/3)O3 and (1−x)Ba(Co1/3Nb2/3)O3–xBa(Zn1/3Nb2/3)O3 ceramics, J Eur Ceram Soc 23 (2003) 2473-2478.
DOI: 10.1016/s0955-2219(03)00151-1
Google Scholar
[12]
C. T. Chen, C. Y. Huang, Y. M. Lin, et al. Structure and microwave dielectric property relations in barium cobalt magnesium niobate ceramics, Jpn J Appl Phys 50 (2011) 091503(1-6).
DOI: 10.1143/jjap.50.091503
Google Scholar
[13]
T. L. Sun, L. Li, M. M. Mao et al. Effects of Postdensification Annealing on Microwave Dielectric Properties of Ba([Mg1−xCox]1/3Nb2/3)O3 Ceramics, Int J Appl Ceram Tec 10 (2013) E210-E218.
DOI: 10.1111/ijac.12126
Google Scholar
[14]
T. L. Sun, M. M. Mao, X. M. Chen. Structure and microwave dielectric properties of Ba[(Mg1−xNix)1/3Nb2/3]O3 ceramics, Mater Res Bull 72 (2015) 291-298.
Google Scholar
[15]
Y. K. Kim, K. M. Lee, H. M. Jang. 1:2 Long-range ordering and defect mechanism of WO3-doped perovskite Ba(Mg1/3Ta2/3)O3, J Mater Sci 35 (2000) 4885-4893.
Google Scholar