[1]
L.L. Hench, R.J. Splinter, W.C. Allen, Bonding mechanisms at the interface of ceramic prosthetic materials, J. Biomed. Mater.Res. Symp. 2 (1971) 117-141.
DOI: 10.1002/jbm.820050611
Google Scholar
[2]
Tsuru. K, Ohtsuki. C, Osaka. A, Bioactivity of sol-gel derived organically modified silicates, Journal of Materials Science: Materials in Medicine. 8(1997)157-161.
DOI: 10.1016/b978-008042692-1/50008-x
Google Scholar
[3]
W.T. Jia, Grace Y. L, W.H. Huang, Bioactive glass for large bone repair, Advanced Healthcare Materials. 4(2015)2842-2848.
DOI: 10.1002/adhm.201500447
Google Scholar
[4]
G.D. Jin, H.L. Cao, Y.Q. Qiao, Osteogenic avtivity and antibactical effect of zinc ion implanted titanium, Colloids and Surface B:Biointerfaces. 117(2014)158-165.
DOI: 10.1016/j.colsurfb.2014.02.025
Google Scholar
[5]
E. Zhang, F. Li, H.Wang, A new antibacterial titanium–copper sintered alloy: Preparation and antibacterial property, Materials Science & Engineering C Materials for Biological Applications. 33(7)(2013)4280-4287.
DOI: 10.1016/j.msec.2013.06.016
Google Scholar
[6]
Y.P. Wang, F. Li, H. Wang, Osteogenic potential of a novel microarc oxidized coating formed on Ti6Al4V alloys. Applied Surface Science. 412(2017)29-36.
DOI: 10.1016/j.apsusc.2017.03.191
Google Scholar
[7]
X. Hu, H. Shen, K. Shuai, Surface bioactivity modification of titanium by CO2 plasma treatment and induction of hydroxyapatite: in vitro and in vivo studies, Appl. Surf. Sci. 257(6)(2011)1813-1823.
DOI: 10.1016/j.apsusc.2010.08.082
Google Scholar
[8]
Geetha. M, Singh. A.K, Asokamani. R, Ti based biomaterials, the ultimate choice for orthopaedic implants – A review, Progress in Materials Science. 54 (2009) 397–425.
DOI: 10.1016/j.pmatsci.2008.06.004
Google Scholar
[9]
Kim. H, Miyaji. F, Kokubo. T, Preparation of bioactive Ti and its alloys via simple chemical surface treatment, Journal of Biomedical Materials Research. 32(1996)409-407.
DOI: 10.1002/(sici)1097-4636(199611)32:3<409::aid-jbm14>3.0.co;2-b
Google Scholar
[10]
Hayakawa. S, Masuda. Y, Okamoto. K, Liquid phase deposited titania coating to enable in vitro apatite formation on Ti6Al4V alloy, J Mater Sci: Mater Med. 25(2014)375-381.
DOI: 10.1007/s10856-013-5078-z
Google Scholar
[11]
Kasemanankul. P, Witit-Anan. N, Chaiyakun. S, Low-temperature deposition of (110) and (101) rutile TiO2 thin flims using dual cathode DC unbalanced magnetron sputtering for inducing hydroxyapatite, Materials Chemistry and Physics. 117(2009).
DOI: 10.1016/j.matchemphys.2009.06.002
Google Scholar
[12]
Kim. H.M, Miyaji. F, Kokubo. T, Effect of heat treatment on apatite-forming ability of Ti metal induced by alkali treatment, Journal of Materials Science: Materials in Medicine. 8(1997)341-347.
Google Scholar
[13]
X.X. Wang, Hayakawa S, Tsuru. K, Bioactive titania gel layers formed by chemical treatment of Ti substrate with a H2O2/HCl solution, Biomaterials. 23(2002)1353-1357.
DOI: 10.1016/s0142-9612(01)00254-x
Google Scholar
[14]
Kokubo. T, Takadama. H, How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 27(15)(2006)2907-2915.
DOI: 10.1016/j.biomaterials.2006.01.017
Google Scholar
[15]
Rohanizadeh. R, Al-Sadeq. M, LeGeros. R.Z, Preparation of different forms of titanium oxide on titanium surface: Effects on apatite deposition, Journal of Biomedical Materials Research Part A.71A(2)(2004)343-352.
DOI: 10.1002/jbm.a.30171
Google Scholar