Microstructure and Erosion Properties of HVOF Sprayed Cermet Coatings via Different Feedstock Powders

Article Preview

Abstract:

In the present study, Cr3C2-NiCr and WC-Co coatings have been deposited using high velocity oxygen-fuel (HVOF) spray technology from five available powders with various bonding phase content or manufacturing process. The microstructure of coatings was observed by scanning electron microscopy (SEM). Microhardness and erosion performance of the coatings were studied. The influence of powder characteristics on the microstructure and erosion performance of coatings was also investigated. The results indicated that an independent bonding phase distributed in the feedstock powder can effectively improve the erosion resistance of Cr3C2-NiCr coatings although the microhardness of the coatings may be lower. Deformation of the free NiCr binder layer in the coating is probably to prevent nucleation and propagation of cracks, which may result in improving the erosion resistance of the coating. Nano WC-Co coatings reached lower erosion resistance than micro WC-Co coatings due to the higher porosity and lower microhardness of nano WC-Co coatings.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 281)

Pages:

552-557

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C.M. Wang, H.F. Sun, Q. Song, Microstructure and performance analysis of Cr3C2-25%NiCr coating prepared by plasma spraying process, Key Eng. Mater. 373-374 (2008) 47-50.

DOI: 10.4028/www.scientific.net/kem.373-374.47

Google Scholar

[2] L. Rovatti, E. Gariboldi, N. Lecis, L. Mondora, G. A. Mondora, Influence of long heat treatments on hardness and tribological behaviour of HVOF sprayed WC-CoCr and Cr3C2-25NiCr coatings, Mater. Sci. Forum 879 (2017) 1612-1617.

DOI: 10.4028/www.scientific.net/msf.879.1612

Google Scholar

[3] H. Singh, M. Kaur, S. Prakash, High-temperature exposure studies of HVOF-sprayed Cr3C2-25(NiCr) / (WC-Co) coating, J. Therm. Spray Technol. 25 (2016) 1192-1207.

DOI: 10.1007/s11666-016-0424-6

Google Scholar

[4] A. Kumar, A. Sharma, S.K. Goel, Erosion behaviour of WC–10Co–4Cr coating on 23-8-N nitronic steel by HVOF thermal spraying, Appl. Surf. Sci. 370 (2016) 418-426.

DOI: 10.1016/j.apsusc.2016.02.163

Google Scholar

[5] R.K. Kumar, M. Kamaraj, S. Seetharamu, T. Pramod, P. Sampathkumaran, Effect of spray particle velocity on cavitation erosion resistance characteristics of HVOF and HVAF processed 86WC-10Co4Cr hydro turbine coatings, J. Therm. Spray Technol. 25 (2016).

DOI: 10.1007/s11666-016-0427-3

Google Scholar

[6] A. Urbahs, J. Rudzitis, K. Savkovs, M. Urbaha, I. Boiko, A. Leitans, J. Lungevics, Titanium compound erosion-resistant nano-coatings, Key Eng. Mater. 674 (2016) 283-288.

DOI: 10.4028/www.scientific.net/kem.674.283

Google Scholar

[7] A. Hamilton, A. Sharma, U. Pandel, Effect of impingement angle on erosion resistance of HVOF sprayed WC-10Co-4Cr coating on CA6NM steel, Key Eng. Mater. 751 (2017) 79-83.

DOI: 10.4028/www.scientific.net/kem.751.79

Google Scholar

[8] D. Shin, A. Hamed, Influence of micro–structure on erosion resistance of plasma sprayed 7YSZ thermal barrier coating under gas turbine operating conditions, Wear 396-397 (2017) 34-47.

DOI: 10.1016/j.wear.2017.11.005

Google Scholar

[9] H. Arabnejad, S.A. Shirazi, B.S. Mclaury, H.J. Subramani, L.D. Rhyne, The effect of erodent particle hardness on the erosion of stainless steel, Wear 332-333 (2015) 1098-1103.

DOI: 10.1016/j.wear.2015.01.017

Google Scholar

[10] V. Bonache, M.D. Salvador, J.C. García, V. García, E. Sánchez, M. Vicent, Study of erosion behaviour of conventional and nanostructured WC-12Co coatings sprayed by atmospheric plasma, Key Eng. Mater. 423 (2010) 35-40.

DOI: 10.4028/www.scientific.net/kem.423.35

Google Scholar

[11] X. Ding, X.D. Cheng, J. Shi, C. Li, C.Q. Yuan, Z.X. Ding, Influence of WC size and HVOF process on erosion wear performance of WC-10Co4Cr coatings, Int. J. Adv. Manuf. Technol. 5 (2017) 1-10.

DOI: 10.1007/s00170-017-0795-y

Google Scholar

[12] M.S. Lamana, A.G.M. Pukasiewicz, S. Sampath, Influence of cobalt content and HVOF deposition process on the cavitation erosion resistance of WC-Co coatings, Wear s398–399 (2018) 209-219.

DOI: 10.1016/j.wear.2017.12.009

Google Scholar

[13] G.C. Ji, C.J. Li, Y.Y. Wang, W.Y. Li, Erosion performance of HVOF-sprayed Cr3C2-NiCr coatings, J. Therm. Spray Technol. 16 (2007) 557-565.

DOI: 10.1007/s11666-007-9052-5

Google Scholar

[14] G.J. Yang, C.J. Li, S.J. Zhang, C.X. Li, High-temperature erosion of HVOF sprayed Cr3C2-NiCr coating and mild steel for boiler tubes, J. Therm. Spray Technol. 17 (2008) 782-787.

DOI: 10.1007/s11666-008-9222-0

Google Scholar

[15] C.J. Li, H. Yang, H. Li, Effect of gas condition on HVOF flame and properties of WC-Co coatings, Mater. Manuf. Processes 14 (1999) 383-395.

DOI: 10.1080/10426919908914834

Google Scholar

[16] Z.X. Ding, Q. Wang, Z.L. Liu, Performance study of erosion wear of nanostructured WC-12Co coatings sprayed by HVOF, Key Eng. Mater. 373-374 (2008) 27-30.

DOI: 10.4028/www.scientific.net/kem.373-374.27

Google Scholar

[17] P.H. Shipway, I.M. Hutchings, The role of particle properties in the erosion of brittle materials, Wear 193 (1996) 105-113.

DOI: 10.1016/0043-1648(95)06694-2

Google Scholar