Oxidation Behavior of Cr1-xAlxN Coatings Deposited by Closed Field Unbalanced Magnetron Sputtering at 800°C

Article Preview

Abstract:

CrN coating possesses high strength, hardness and good resistance to friction. In order to further improve the performance of CrN coating, especially the high temperature resistance, a series of Cr1-xAlxN coatings with different Al content were deposited on the surface of 316 stainless steel by closed field unbalanced magnetron sputtering (CFUBMS). The microstructure, mechanical properties of Cr1-xAlxN coatings were investigated by XRD, FESEM/EDS and microhardness tester, respectively. The oxidation behaviors of Cr1-xAlxN coatings at 800°C were also studied. The results showed that with the increase of Al content, the hardness of the coating increases first and then decreases, and the binding force decreases gradually, and its microstructure is gradually refined. The phases in CrAlN coatings are mainly CrN and AlN. As the amount of Al increases, the number of dense oxide films on the surface of the coating increases, increasing the antioxidant capacity of the coating.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 281)

Pages:

546-551

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Sabitzer, J. Paulitsch, S. Kolozsv_ari, R. Rachbauer, P.H. Mayrhofer, Influence of bias potential and layer arrangement on structure and mechanical properties of arc evaporated AleCreN coatings, Vacuum 106 (2014) 49-52.

DOI: 10.1016/j.vacuum.2014.03.006

Google Scholar

[2] A. Kayani, T.L. Buchanan, M. Kopczyk, C. Collins, J. Lucas, K. Lund, et al., Oxidation resistance of magnetron-sputtered CrAlN coatings on 430 steel at 800 oC, Surf. Coat. Technol. 201 (2006) 4460-4466.

DOI: 10.1016/j.surfcoat.2006.08.049

Google Scholar

[3] B. Yang, L. Chen, K.K. Chang, W. Pan, Y.B. Peng, Y. Du, et al., Thermal and thermo-mechanical properties of TieAleN and CreAleN coatings, Int. J. Refract. Met. Hard Mat. 35 (2012) 235-240.

DOI: 10.1016/j.ijrmhm.2012.06.007

Google Scholar

[4] H. Willmann, P.H. Mayrhofer, P.O.A. Persson, A.E. Reiter, L. Hultman, C. Mitterer, Thermal stability of AleCreN hard coatings, Scr. Mater. 54 (2006) 1847-1851.

DOI: 10.1016/j.scriptamat.2006.02.023

Google Scholar

[5] T. Polcar, A. Cavaleiro, High temperature properties of CrAlN, CrAlSiN and AlCrSiN coatings e Structure and oxidation, Mater. Chem. Phys. 129 (2011) 195-201.

DOI: 10.1016/j.matchemphys.2011.03.078

Google Scholar

[6] C.J. Wang, S.M. Chen, Microstructure and cyclic oxidation behavior of hot dip aluminized coating on Ni-base super alloy Inconel 718, Surf. Coat. Technol. 201 (2006) 3862–3866.

DOI: 10.1016/j.surfcoat.2006.07.242

Google Scholar

[7] H.W. Chen, Y.C. Chan, J.W. Lee, J.G. Duh, Oxidation resistance of nanocomposite CrAlSiN under long-time heat treatment, Surf. Coat. Technol. 206 (2011) 1571–1576.

DOI: 10.1016/j.surfcoat.2011.06.009

Google Scholar

[8] Y.C. Chim, X.Z. Ding, X.T. Zeng, S. Zhang, Oxidation resistance of TiN, CrN, TiAlN and CrAlN coatings deposited by lateral rotating cathode arc, Thin Solid Films 517 (2009) 4845.

DOI: 10.1016/j.tsf.2009.03.038

Google Scholar

[9] H.W. Chen, Y.C. Chan, J.W. Lee, J.G. Duh, Oxidation behavior of Si-doped nanocomposite CrAlSiN coatings, Surf. Coat. Technol. 205 (2010) 1189–1194.

DOI: 10.1016/j.surfcoat.2010.08.156

Google Scholar

[10] J. Lin, B. Mishra, J.J. Moore, W.D. Sproul, A study of the oxidation behavior of CrN and CrAlN thin films in air using DSC and TGA analyses, Surf. Coat. Technol. 202 (2008) 3272-3283.

DOI: 10.1016/j.surfcoat.2007.11.037

Google Scholar

[11] Y.Y. Chang, C.P. Chang, D.Y. Wang, S.M. Yang, W. Wu, High temperature oxidation resistance of CrAlSiN coatings synthesized by a cathodic arc deposition process, J. Alloy Compd. 461 (2008) 336-341.

DOI: 10.1016/j.jallcom.2007.06.084

Google Scholar

[12] D.R. Lide, W.M. Haynes, CRC Handbook of Chemistry and Physics, 90th ed., CRC Press/Taylor and Franics, Boca Raton, (2010).

Google Scholar

[13] B. Yang, L. Chen, K.K. Chang, W. Pan, Y.B. Peng, Y. Du, et al., Thermal and thermo mechanical properties of TieAleN and CreAleN coatings, Int. J. Refract. Met. Hard Mat. 35 (2012) 235-240.

DOI: 10.1016/j.ijrmhm.2012.06.007

Google Scholar

[14] L. He, L. Chen, Y. Xu, Y. Du, Thermal stability and oxidation resistance of Cr1-xAlxN coatings with single phase cubic structure, J. Vac. Sci. Technol. A 33 (2015) 0615131-0615138.

Google Scholar

[15] I.W. Park, D.S. Kang, J.J. Moore, S.C. Kwon, J.J. Rha, K.H. Kim, Microstructures, mechanical properties, and tribological behaviors of Cr-Al-N, Cr-Si-N, and Cr-Al-Si-N coatings by a hybrid coating system, Surf. Coat. Technol. 201 (2007).

DOI: 10.1016/j.surfcoat.2006.07.118

Google Scholar

[16] S.H. Kim, J.K. Kim, K.H. Kim, Influence of deposition conditions on the microstructure and mechanical properties of Ti-Si-N films by DC reactive magnetron sputtering, Thin Solid Films 420 (2002) 360–365.

DOI: 10.1016/s0040-6090(02)00833-7

Google Scholar

[17] K. Lukaszkowicz, L.A. Dobrzanski, G. Kokot, P. Ostachowski, Characterization and properties of PVD coatings applied to extrusion dies, Vacuum 12 (2012) 2082-(2088).

DOI: 10.1016/j.vacuum.2012.04.025

Google Scholar

[18] S.K. Tien, C.H. Lin, Y.Z. Tasi, J.G. Duh, Effect of nitrogen flow on the properties of quaternary CrAlSiN coatings at elevated temperatures, Surf. Coat. Technol. 202 (2007) 7350-7359.

DOI: 10.1016/j.surfcoat.2007.06.042

Google Scholar

[19] Z.T. Chen, G.J. Peng, Effect of Si content on Thermal Stability of CrAl(Si)N coatings, Applied Mechanics and Materials, 799-800 (2015) 448-451.

DOI: 10.4028/www.scientific.net/amm.799-800.448

Google Scholar

[20] X.M. Xu, H. Zhang, The Properties of CrSiN Coatings of Different Si Content, Applied Mechanics and Materials, 687-691 (2015): 4323-4326.

DOI: 10.4028/www.scientific.net/amm.687-691.4323

Google Scholar