Oxidation Resistance of ZrB2-SiC-WSi2 Coating Prepared by Vacuum Plasma Spraying

Article Preview

Abstract:

ZrB2-SiC-WSi2 (labeled as ZSW) coating and ZrB2-SiC (labeled as ZS) coating were fabricated by vacuum plasma spray technique. The microstructure and composition of as-sprayed coating were detected through X-ray diffraction (XRD), scanning electron microscope (SEM) and X-ray energy dispersive spectrometry (EDS). Oxidation behaviors and microstructure evolution of these coatings were evaluated at 1500 °C in air and compared with ZrB2-SiC coating. The results showed that the addition of WSi2 improved the oxidation resistance of the ZrB2-SiC coating. There was more liquid formed on the ZSW coating surface. Some bubbles were also observed on the coating surface, which might be resulted from gas formation. It can be concluded that the amount of WSi2 had great influence on its function in ZrB2-SiC system.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 281)

Pages:

522-527

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. G. Fahrenholtz, G. E. Hilmas, I. G. Talmy, et al. Refractory diborides of zirconium and hafnium, J. Am. Ceram. Soc. 90 (2007) 1347-1364.

DOI: 10.1111/j.1551-2916.2007.01583.x

Google Scholar

[2] S. Q. Guo. Densification of ZrB2-based composites and their mechanical and physical properties: a review, J. Eur. Ceram. Soc. 29(2009) 995-1011.

Google Scholar

[3] W. G. Fahrenholtz, G. E. Hilmas, Ultra-high temperature ceramics: Materials for extreme environments, Scr. Mater. 129 (2017) 94-99.

DOI: 10.1016/j.scriptamat.2016.10.018

Google Scholar

[4] E. Eakins, D. D. Jayaseelan, W. E. Lee, Toward oxidation-resistant ZrB2-SiC ultra high temperature ceramics, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. 42(2011) 878-887.

DOI: 10.1007/s11661-010-0540-8

Google Scholar

[5] C. M. Carney, T. A. Parthasarathy, M. K. Cinibulk, Oxidation resistance of hafnium diboride ceramics with additions of silicon carbide and tungsten boride or tungsten carbide, J. Am. Ceram. Soc. 94(2011) 2600-2607.

DOI: 10.1111/j.1551-2916.2011.04462.x

Google Scholar

[6] J. Zou, V. Rubio, J. Binner. Thermoablative resistance of ZrB2-SiC-WC ceramics at 2400 °C, Acta Mater. 133(2017) 293-302.

DOI: 10.1016/j.actamat.2017.05.033

Google Scholar

[7] S. C. Zhang, G. E. Hilmas, W. G. Fahrenholtz, Improved oxidation resistance of zirconium diboride by tungsten carbide additions, J. Am. Ceram. Soc. 91 (2008) 3530-3535.

DOI: 10.1111/j.1551-2916.2008.02713.x

Google Scholar

[8] S. C. Zhang, G. E. Hilmas, W. G. Fahrenholtz, Oxidation of zirconium diboride with tungsten carbide additions, J. Am. Ceram. Soc. 94 (2011) 1198-1205.

DOI: 10.1111/j.1551-2916.2010.04216.x

Google Scholar

[9] S. N. Karlsdottir, J. W. Halloran, C. E. Henderson, Convection patterns in liquid oxide films on ZrB2–SiC composites oxidized at a high temperature, J. Am. Ceram. Soc. 90 (2007) 2863-2867.

DOI: 10.1111/j.1551-2916.2007.01784.x

Google Scholar

[10] L. L. Y. Chang, M. G. Scroger, B. Phillips, Condensed phase relations in the systems ZrO2-WO2-WO3 and HfO2-WO2-WO3, J. Am. Ceram. Soc. 50(1967) 211-215.

DOI: 10.1111/j.1151-2916.1967.tb15084.x

Google Scholar

[11] M. K. Dehdashti, W. G. Fahrenholtz, G. E. Hilmas, Effects of temperature and the incorporation of W on the oxidation of ZrB2 ceramics, Corrosion Sci. 80(2014) 221-228.

DOI: 10.1016/j.corsci.2013.11.030

Google Scholar

[12] C. Carney, A. Paul, S. Venugopal, et al. Qualitative analysis of hafnium diboride based ultra high temperature ceramics under oxyacetylene torch testing at temperatures above 2100 oC, J. Eur. Ceram. Soc. 34(2014) 1045-1051.

DOI: 10.1016/j.jeurceramsoc.2013.11.018

Google Scholar