Synthesis of Boron Nitride Coating on Graphene

Article Preview

Abstract:

A method to synthesize boron nitride (BN) coating on the surface of graphene has been developed. BN coating was synthesized by the direct reaction of sodium borohydride and ammonium chloride at a relatively low temperature of 600 °C. Synthesized sample was characterized by RAM, XRD, FESEM, TEM and XPS. It is revealed that the BN coating combines with graphene through van der Waals interactions, and the elements B and N distribute homogeneously on the surface of graphene. Thermogravimetric analysis showed that the oxidation resistance of the graphene was improved after being coated with BN.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 281)

Pages:

499-503

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Kim, S. Kwon, D.-H. Cho, et al., Direct exfoliation and dispersion of two-dimensional materials in pure water via temperature control, Nat. Commun. 6 (2015) 8294.

Google Scholar

[2] A.K. Geim, K.S. Novoselov, The rise of graphene, Nat. Mater. 6 (2007) 183-191.

Google Scholar

[3] J.-H. Ahn, B.H. Hong, Graphene for displays that bend, Nat. Nanotechnol. 9 (2014) 737-738.

Google Scholar

[4] X. Mu, B. Yuan, X. Feng, et al., The effect of doped heteroatoms (nitrogen, boron, phosphorus) on inhibition thermal oxidation of reduced graphene oxide, RSC Adv. 6 (2016) 105021-105029.

DOI: 10.1039/c6ra21329d

Google Scholar

[5] S. Sandoval, N. Kumar, A. Sundaresan, et al., Enhanced thermal oxidation stability of reduced graphene oxide by nitrogen doping, Chem. Eur. J. 20 (2014) 11999-12003.

DOI: 10.1002/chem.201403833

Google Scholar

[6] B. Yuan, W. Xing, Y. Hu, et al., Boron/phosphorus doping for retarding the oxidation of reduced graphene oxide, Carbon 101 (2016) 152-158.

DOI: 10.1016/j.carbon.2016.01.080

Google Scholar

[7] S.K. Swain, S. Dash, C. Behera, S.K. Kisku, L. Behera, Cellulose nanobiocomposites with reinforcement of boron nitride: study of thermal, oxygen barrier, and chemical resistant properties, Carbohydr. Polym. 95 (2013) 728-732.

DOI: 10.1016/j.carbpol.2013.02.080

Google Scholar

[8] L.H. Li, J. Cervenka, K. Watanabe, T. Taniguchi, Y. Chen, Strong oxidation resistance of atomically thin boron nitride nanosheets, ACS Nano 8 (2014) 1457-1462.

DOI: 10.1021/nn500059s

Google Scholar

[9] L. Li, T. Xing, Y. Chen, R. Jones, Boron nitride nanosheets for metal protection, Adv. Mater. Interfaces 1 (2014) 1300132.

DOI: 10.1002/admi.201300132

Google Scholar

[10] M. Yi, Z. Shen, X. Zhao, S. Liang, L. Liu, Boron nitride nanosheets as oxygen-atom corrosion protective coatings, Appl. Phys. Lett. 104 (2014) 143101.

DOI: 10.1063/1.4870530

Google Scholar

[11] W. Wang, J. Bi, W. Sun, H. Zhu, J. Xu, M. Zhao, Y. Bai, Facile synthesis of boron nitride coating on carbon nanotubes, Mater. Chem. Phys. 122 (2010) 129-132.

DOI: 10.1016/j.matchemphys.2010.02.056

Google Scholar

[12] J. Liu, R.G. Kutty, Q. Zheng, V. Eswariah, S. Sreejith, Z. Liu, Hexagonal boron nitride nanosheets as high-performance binder-free fire-resistant wood coatings, Small 13 (2017) 1602456.

DOI: 10.1002/smll.201602456

Google Scholar

[13] M.C. Polo, E. Martinez, J. Esteve, J.L. Andujar, Micromechanical properties of BN and B-C-N coatings obtained by r. f. plasma-assisted CVD, Diam. Relat. Mater. 8 (1999) 423-427.

DOI: 10.1016/s0925-9635(98)00378-1

Google Scholar

[14] T.H. Tsai, T.S. Yang, C.L. Cheng, M.S. Wong, Synthesis and properties of boron carbon nitride (BN:C) films by pulsed-DC magnetron sputtering, Mater. Chem. Phys. 72 (2001) 264-268.

DOI: 10.1016/s0254-0584(01)00449-7

Google Scholar

[15] C.R. Deanl, A.F. Young, I. Meric, et al., Boron nitride substrates for high-quality graphene electronics, Nat. Nanotechnol. 5 (2010) 722-726.

Google Scholar

[16] S.J. Kang, G.-H. Lee, Y.-J. Yu, et al., Organic field effect transistors based on graphene and hexagonal boron nitride heterostructures, Adv. Funct. Mater. 24 (2014) 5157-5163.

DOI: 10.1002/adfm.201400348

Google Scholar

[17] H. Li, R.Y. Tay, S.H. Tsang, W. Liu, E.H.T. Teo, Reduced graphene oxide/boron nitride composite film as a novel binder-free anode for lithium ion batteries with enhanced performances, Electrochim. Acta 166 (2015) 197-205.

DOI: 10.1016/j.electacta.2015.03.109

Google Scholar

[18] Y. Kang, Z. Chu, D. Zhang, et al., Incorporate boron and nitrogen into graphene to make BCN hybrid nanosheets with enhanced microwave absorbing properties, Carbon 61 (2013) 200-208.

DOI: 10.1016/j.carbon.2013.04.085

Google Scholar

[19] M.V. Bracamonte, G.I. Lacconi, S. Urreta, L.E.F. Foa Torres, On the nature of defects in liquid-phase exfoliated graphene, J. Phys. Chem. C 118 (2014) 15455-15459.

DOI: 10.1021/jp501930a

Google Scholar

[20] A. Pakdel, X. Wang, C. Zhi, et al., Facile synthesis of vertically aligned hexagonal boron nitride nanosheets hybridized with graphitic domains, J. Mater. Chem. 22 (2012) 4818-4824.

DOI: 10.1039/c2jm15109j

Google Scholar

[21] W. Chiang, C. Hsieh, S. Lo, Y. Chang, T. Kawai, Y. Nonoguchi, C/BCN core/shell nanotube films with improved thermoelectric properties, Carbon 109 (2016) 49-56.

DOI: 10.1016/j.carbon.2016.07.054

Google Scholar