Stress Evolution and Element Diffusion in Bi-Layered Yb2SiO5/ Mullite Environmental Barrier Coatings under High-Temperature Molten Salt Corrosion

Article Preview

Abstract:

Yb2SiO5/mullite bi-layered coatings are promising environmental barrier coatings, but its molten salt corrosion mechanism is unclear. In this work, Yb2SiO5/mullite bi-layered coatings are fabricated by combining plasma spraying and dip-coating techniques. Residual stresses in the coatings caused by thermo-mechanical interaction are investigated by a nondestructive Raman spectrum method under high-temperature molten salt corrosion. In the as-deposited coatings, the stress in the mullite layer is compressive and the value near Si3N4 substrate is minimum. During high-temperature corrosion test, the residual stress near mullite-substrate interface changes sharply while the stress near mullite-Yb2SiO5 interface is concentrated without large fluctuation. An interfacial phase, YbAlO3, which is formed because of the inter diffusion of Al in the mullite layer and Yb in the Yb2SiO5 layer, causes the stress concentration. The change of SiO2 component in the mullite layer leads to the sharp change of residual stress near the mullite-substrate interface.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 281)

Pages:

478-486

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.R. Krause, H.F. Garces, G. Dwivedi, et al., Calcia-magnesia-alumino-silicate (CMAS)-induced degradation and failure of air plasma sprayed yttria-stabilized zirconia thermal barrier coatings. Acta Mater. 105 (2016) 355-366.

DOI: 10.1016/j.actamat.2015.12.044

Google Scholar

[2] N.P. Padture, Advanced structural ceramics in aerospace propulsion, Nature Mater. 15 (2016) 804-809.

DOI: 10.1038/nmat4687

Google Scholar

[3] L. Wang, J.I. Eldridge, S.M. Guo, Comparison of different models for the determination of the absorption and scattering coefficients of thermal barrier coatings, Acta Mater. 64 (2014) 402-410.

DOI: 10.1016/j.actamat.2013.10.053

Google Scholar

[4] S. Mahade, N. Curry, S. Björklund et al., Functional performance of Gd2Zr2O7/YSZ multi-layered thermal barrier coatings deposited by suspension plasma spray, Surf. Coat. Technol. 318 (2017) 208-216.

DOI: 10.1016/j.surfcoat.2016.12.062

Google Scholar

[5] H. Chen, H. Klemm, Environmental barrier coatings for silicon nitride, Key Eng. Mater. 484 (2011) 139-144.

DOI: 10.4028/www.scientific.net/kem.484.139

Google Scholar

[6] M. Longauerová, P. Horňak, P. Zubko, Powder processing and thermal spraying of barium- magnesium-aluminium-silicate environmental barrier coatings, Key Eng. Mater. 891 (2017) 569-573.

DOI: 10.4028/www.scientific.net/msf.891.569

Google Scholar

[7] H. Kakisawa, T. Nishimura, A new method for testing the interface toughness of ceramic environmental barrier coatings (EBCs) on ceramic matrix composites (CMCs), J. Eur. Ceram. Soc. 38 (2018) 655-663.

DOI: 10.1016/j.jeurceramsoc.2017.09.032

Google Scholar

[8] K.M. Grant, S. Krämer, J.P.A. Löfvander, et al., CMAS degradation of environmental barrier coatings, Surf. Coat. Technol. 202 (2007) 653-657.

DOI: 10.1016/j.surfcoat.2007.06.045

Google Scholar

[9] J. Liu, L. Zhang, Q. Liu et al., Calcium-magnesium-aluminosilicate corrosion behaviors of rare-earth disilicates at 1400 °C, J. Euro. Ceram. Soc. 33 (2013) 3419-3428.

DOI: 10.1016/j.jeurceramsoc.2013.05.030

Google Scholar

[10] D.L. Poerschke, J.S.V. Sluytman, K.B. Wong et al., Thermochemical compatibility of ytterbia- (hafnia/silica) multilayers for environmental barrier coatings, Acta Mater. 61 (2013) 6743-6755.

DOI: 10.1016/j.actamat.2013.07.047

Google Scholar

[11] J.S. Yang, J.H. Yu, X.H. Zhong et al., Experimental and numerical investigation of residual stresses in plasma-sprayed thermal barrier coatings, J. Inorg. Mater. 28 (2013) 1381-1386.

DOI: 10.3724/sp.j.1077.2013.13272

Google Scholar

[12] D.L. Poerschke, D.D. Hass, S. Eustis et al., Stability and CMAS resistance of ytterbium- silicate/hafnate EBCs/TBC for SiC composites, J. Am. Ceram. Soc. 98 (2015) 278-286.

DOI: 10.1111/jace.13262

Google Scholar

[13] S.B. Wang, Y.R. Lu, Y.X. Chen, Synthesis of single‐phase β‐Yb2Si2O7 and properties of its sintered bulk, Int. J. App. Ceram.Technol., 12 (2015) 1140-1147.

DOI: 10.1111/ijac.12353

Google Scholar

[14] S. Mahade, N. Curry, S. Björklund et al., Thermal conductivity and thermal cyclic fatigue of multilayered Gd2Zr2O7/YSZ thermal barrier coatings processed by suspension plasma spray, Surf. Coat. Technol. 283 (2015) 329-336.

DOI: 10.1016/j.surfcoat.2015.11.009

Google Scholar

[15] S. Ueno, T. Ohji, H.T. Lin, Recession behavior of Yb2Si2O7 phase under high speed steam jet at high temperatures, Corros. Sci. 50 (2008) 178-182.

DOI: 10.1016/j.corsci.2007.06.014

Google Scholar

[16] T. Hussain, Cold spraying of titanium: A review of bonding mechanisms, Microstructure and Properties, Key Eng. Mater. 533 (2013) 53-90.

DOI: 10.4028/www.scientific.net/kem.533.53

Google Scholar

[17] S.M. Ahn, S.Y. Park, Y.C. Kim et al., Surface residual stress in soda-lime glass evaluated using instrumented spherical indentation testing, J. Mater. Sci, 50 (2015) 7752-7759.

DOI: 10.1007/s10853-015-9345-x

Google Scholar

[18] N.V. Patel, E.H. Jordan, S. Sridharan et al., Cyclic furnace testing and life predictions of thermal barrier coating spallation subject to a step change in temperature or in cycle duration, Surf. Coat. Technol. 275 (2015) 384-391.

DOI: 10.1016/j.surfcoat.2015.04.037

Google Scholar

[19] C. Zheng, N.Q. Wu, J. Singh, Effect of Al2O3 overlay on hot-corrosion behavior of yttria-stabilized zirconia coating in molten sulfate-vanadate salt, Thin Solid Films 443 (2003) 46-52.

DOI: 10.1016/s0040-6090(03)00670-9

Google Scholar

[20] D. M. Namara, P. Alveen, S. Damm et al., A raman spectroscopy investigation into the influence of thermal treatments on the residual stress of polycrystalline diamond, Int. J. Refract. Met. Hard Mater. 52 (2015) 114-122.

DOI: 10.1016/j.ijrmhm.2015.04.025

Google Scholar