[1]
D.R. Clarke, M. Oechsner, and N. P. Padture, Thermal-barrier coatings for more efficient gas-turbine engines,, MRS Bulletin, 37[10] (2012) 891-98.
DOI: 10.1557/mrs.2012.232
Google Scholar
[2]
M. Zhao, L. X. Zhang, and W. Pan, Properties of Yttria-Stabilized-Zirconia Based Ceramic Composite Abradable Coatings,, Key Engineering Materials, 512-515 (2012) 1551-54.
DOI: 10.4028/www.scientific.net/kem.512-515.1551
Google Scholar
[3]
H. Zhou, F. Li, J. Wang, and B. D. Sun, Microstructural Characterization of Thermal Barrier Coatings Glazed by a High Power Laser,, Key Engineering Materials, 723 (2017) 247-51.
DOI: 10.4028/www.scientific.net/kem.723.247
Google Scholar
[4]
J. Sun, Y. Q. Xu, W. Z. Li, and K. Lv, Research on the Stability of Thermal Barrier Coatings under Thermal Cyclic Loading,, Key Engineering Materials, 730 (2017) 75-80.
DOI: 10.4028/www.scientific.net/kem.730.75
Google Scholar
[5]
D. L. Poerschke, R. W. Jackson, and C. G. Levi, Silicate Deposit Degradation of Engineered Coatings in Gas Turbines: Progress Toward Models and Materials Solutions,, Annual Review of Materials Research, 47[1] (2017) 297-330.
DOI: 10.1146/annurev-matsci-010917-105000
Google Scholar
[6]
C. G. Levi, J. W. Hutchinson, M.-H. Vidal-Sétif, and C. A. Johnson, Environmental degradation of thermal-barrier coatings by molten deposits,, MRS Bulletin, 37[10] (2012) 932-41.
DOI: 10.1557/mrs.2012.230
Google Scholar
[7]
R. Naraparaju, H. Lau, M. Lange, C. Fischer, D. Kramer, U. Schulz, and K. Weber, Integrated testing approach using a customized micro turbine for a volcanic ash and CMAS related degradation study of thermal barrier coatings,, Surface and Coatings Technology, 337 (2018).
DOI: 10.1016/j.surfcoat.2018.01.030
Google Scholar
[8]
E. Bakan and R. Vaßen, Ceramic top coats of plasma-sprayed thermal barrier coatings: materials, processes, and properties,, Journal of Thermal Spray Technology, 26[6] (2017) 992-1010.
DOI: 10.1007/s11666-017-0597-7
Google Scholar
[9]
C. Zhao, M. Zhao, M. Shahid, M. Wang, and W. Pan, Restrained TGO growth in YSZ/NiCrAlY thermal barrier coatings by modified laser remelting,, Surface and Coatings Technology, 309 (2017) 1119-25.
DOI: 10.1016/j.surfcoat.2016.05.015
Google Scholar
[10]
E. Delon, F. Ansart, S. Duluard, J. P. Bonino, A. Malié, A. Joulia, and P. Gomez, Synthesis of yttria by aqueous sol-gel route to develop anti-CMAS coatings for the protection of EBPVD thermal barriers,, Ceramics International, 42[12] (2016)13704-14.
DOI: 10.1016/j.ceramint.2016.05.169
Google Scholar
[11]
K. Zhang, L. Liu, C. Ren, K. Wang, G. Dai, X. Zheng, and Y. He, Preparation of Al2O3–ZrO2–Y2O3 Composite Coatings by a Modified Sol–Gel Technique for Thermal Barrier Application,, Oxidation of Metals, 80[3-4] (2012) 323-39.
DOI: 10.1007/s11085-012-9315-5
Google Scholar
[12]
C. Viazzi, J. P. Bonino, and F. Ansart, Synthesis by sol-gel route and characterization of Yttria Stabilized Zirconia coatings for thermal barrier applications,, Surface and Coatings Technology, 201 [7] (2006) 3889-93.
DOI: 10.1016/j.surfcoat.2006.07.241
Google Scholar
[13]
F. Blas, F. Ansart, P. Lours, J.-P. Bonino, S. Duluard, V. Vidal, L. Pin, G. Pujol, and L. Bonin, Processing thermal barrier coatings via sol-gel route: Crack network control and durability,, Surface and Coatings Technology, 334 (2018) 71-77.
DOI: 10.1016/j.surfcoat.2017.11.008
Google Scholar
[14]
C. Jing, X. Xu, and J. Hou, Preparation of compact Al2O3 film on metal for oxidation resistance by polyvinylpyrrolidone,, Journal of Sol-Gel Science and Technology, 43[3] (2007) 321-27.
DOI: 10.1007/s10971-007-1579-x
Google Scholar