Processing and Properties of (Zr,Hf)B2-SiC Ceramic Composites

Article Preview

Abstract:

Different molar ratio of HfB2 and ZrB2 had been mixed, and 30 vol.% SiC was selected as sintering additives. The mixing powders were sintered by hot pressing at 1900 °C for 1 h under a pressure of 20 MPa in Ar atmosphere. X-ray diffraction, scanning microscopy and Archimedes’s method were used to characterize the phase, microstructure and density of the sintered composites. Meanwhile, the hardness, the fracture toughness and flexural strength of the obtained composites were considered too. It can be found that the (Zr,Hf)B2 solid solutions were formed by HfB2 and ZrB2 during the sintering. The flexural strength of (Zr,Hf)B2-SiC composites increased with the amount of HfB2 increasing, which reached (332±40) MPa for the composites content of 70% HfB2. Which fracture toughness was (2.22±0.25) MPa·m1/2. The highest Vickers’ harness of was (24.8±3.4) GPa for the composites content of 50% HfB2.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 281)

Pages:

438-443

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W.G. Fahrenholtz, et al, Refractory diborides of zirconium and hafnium, J. Am. Ceram. Soc., 90 (2007) 1347-1364.

Google Scholar

[2] S.Q. Guo, et al, Densification of ZrB2-based composites and their mechanical and physical properties: a review, J. Eur. Ceram. Soc., 29 (2009) 995-1011.

Google Scholar

[3] J.K. Sonber, et al, Synthesis and consolidation of zirconium diboride:review, Adv. Appl. Ceram., 110 (2011) 321-334.

Google Scholar

[4] W.W. Wu, et al, Microstructure and Anisotropic Properties of Textured ZrB2 and ZrB2-MoSi2 Ceramics Prepared by Strong Magnetic Field Alignment, Int. J. Appl. Ceram. Tech., 11 (2014) 218-227.

DOI: 10.1111/ijac.12061

Google Scholar

[5] R.Z. Wang, et al, Effects of microstructures and flaw evolution on the fracture strength of ZrB2-MoSi2 composites under high temperatures, J. Alloys. Compd. 644 (2015) 582-588.

DOI: 10.1016/j.jallcom.2015.05.027

Google Scholar

[6] X.T. Zhao, et al, ZrB2-SiCw ceramic composites synthesized by in-situ reaction and spark plasma sintering, Int. J. Appl. Ceram. Tech., 14 (2017) 845-850.

DOI: 10.1111/ijac.12720

Google Scholar

[7] J. Watts, et al, Mechanical characterization of ZrB2-SiC composites with varying SiC particle sizes, J. Am. Ceram. Soc., 94 (2011) 4410-4418.

DOI: 10.1111/j.1551-2916.2011.04885.x

Google Scholar

[8] D. Sciti, et al, Processing, sintering and oxidation behavior of SiC fibers reinfored ZrB2 composites, J. Eur. Ceram. Soc., 32 (2012) 1933-(1940).

DOI: 10.1016/j.jeurceramsoc.2011.10.032

Google Scholar

[9] S.Q. Guo, et al, Mechanical behavior of two-step hot-pressed ZrB2-based composites with ZrSi2, J. Eur. Ceram. Soc., 29 (2009) 787-794.

DOI: 10.1016/j.jeurceramsoc.2008.06.037

Google Scholar

[10] S. Gang, et al, ZrB2-ZrSi2-SiC composites prepared by reactive spark plasma sintering, Int. J. Refractory metals and hard mater., 60 (2016) 104-107.

DOI: 10.1016/j.ijrmhm.2016.07.011

Google Scholar

[11] S.Q. Guo, Effects of sintering temperature and excess Zr on mechanical properties of reactive hot-pressed ZrB2-ZrCx-Zr Cermets, Key Eng. Mater., 697 (2016) 633-638.

DOI: 10.4028/www.scientific.net/kem.697.633

Google Scholar

[12] D.W. Readey, Kinetics in materials science and engineering, Boca Raton, Florida, (2016).

Google Scholar

[13] D.B. Miracle, et al, A critical review of high entropy alloys and related concepts, Acta Mater., 122 (2017) 448-511.

DOI: 10.1016/j.actamat.2016.08.081

Google Scholar

[14] S. Otania, et al, Solid solution ranges of zirconium diboride with other refractory diborides: HfB2, TiB2, TaB2, NbB2, VB2 and CrB2, J. Alloys Compd., 475 (2009) 273-275.

DOI: 10.1016/j.jallcom.2008.08.023

Google Scholar

[15] A.A. Miguel, et al, Mechanosynthesis of Hf1-xZrxB2 solid solution and Hf1-xZrxB2/SiC composite powders, J. Am. Ceram. Soc., 93 (2010) 696-702.

Google Scholar

[16] D.L. Mclane, et al, Thermal properties of (Zr,TM)B2 solid solutions with TM=Hf, Nb, W, Ti, and Y, J. Eur. Ceram. Soc., 97 (2014) 1552-1558.

DOI: 10.1111/jace.12893

Google Scholar

[17] L. Silvestroni, et al, TEM analysis, mechanical characterization and oxidation resistance of a highly refractory ZrB2 composite, J. Alloys Compd., 602 (2014) 346-355.

DOI: 10.1016/j.jallcom.2014.02.133

Google Scholar

[18] D. Sciti, et al, Sintering and mechanical properties of ZrB2-TaSi2 and HfB2-TaSi2 ceramic composites, J. Am. Ceram. Soc., 91 (2008) 3285-3291.

DOI: 10.1111/j.1551-2916.2010.04317.x

Google Scholar

[19] L. Silvestroni, et al, Transmission electron microscopy on Zr- and Hf- borides with MoSi2 addition: densification mechanisms, J. Mater. Res., 25 (2010) 828-834.

DOI: 10.1557/jmr.2010.0126

Google Scholar

[20] H.L. Wang, et al, The processing and properties of (Zr,Hf)B2-SiC nanostructured composites, J. Eur. Ceram. Soc., 34 (2014) 4105- 4109.

DOI: 10.1016/j.jeurceramsoc.2014.05.020

Google Scholar

[21] B. Basu, et al, Dynamic compression behavior of reactive spark plasma sintered ultrafine grained (Zr,Hf)B2-SiC composites, Ceram. Int., 41 (2015) 8468-8474.

DOI: 10.1016/j.ceramint.2015.03.052

Google Scholar

[22] H.L. Wang, et al, Nano-Hafnium diboride powders synthesized using a spark plasma sintering apparatus, J. Am. Ceram. Soc., 95 (2012) 1493-1496.

DOI: 10.1111/j.1551-2916.2012.05141.x

Google Scholar