[1]
K. Fukuda, M. Hisamura, Y. Kawamoto, T. Iwata, Synthesis, crystal structure, and thermoelectric properties of a new layered carbide (ZrC)3[Al3.56Si0.44]C3, J. Mater. Res. 22 (2007) 2888-2894.
DOI: 10.1557/jmr.2007.0372
Google Scholar
[2]
Z.J. Lin, L.F. He, J.Y. Wang, M.S. Li, Y.W. Bao, Y.C. Zhou, Atomic-scale microstructure and elastic properties of quaternary Zr-Al-Si-C ceramics, Acta Mater. 56 (2008) 2022-(2031).
DOI: 10.1016/j.actamat.2007.12.055
Google Scholar
[3]
Y.C. Zhou, L.F. He, Z.J. Lin, J.Y. Wang, Synthesis and structure-property relationships of a new family of layered carbides in Zr-Al(Si)-C and Hf-Al(Si)-C systems, J. Eur. Ceram. Soc. 33 (2013) 2831-2865.
DOI: 10.1016/j.jeurceramsoc.2013.05.020
Google Scholar
[4]
G.Q. Chen, R.B. Zhang, X.H. Zhang, W.B. Han, Microstructure and properties of hot pressed Zr2(Al(Si))4C5/SiC composites, J. Alloys Compd. 481 (2009) 877-880.
DOI: 10.1016/j.jallcom.2009.03.142
Google Scholar
[5]
L. Wu, L.F. He, J.X. Chen, X.P. Lu, Y.C. Zhou, Reciprocating friction and wear behavior of Zr2(Al(Si))4C5 and Zr2[Al(Si)]4C5-SiC composite against Si3N4 ball, J. Am. Ceram. Soc. 93 (2010) 2369-2376.
DOI: 10.1111/j.1551-2916.2010.03718.x
Google Scholar
[6]
R.B. Zhang, G.Q. Chen, Y.M. Pei, D.N. Fang, Isothermal oxidation of Zr2[Al(Si)]4C5-SiC composites at 1000-1300 °C in air, Corros. Sci. 54 (2012) 205-211.
DOI: 10.1016/j.corsci.2011.09.016
Google Scholar
[7]
L.F. He, F.Z. Li, X.P. Lu, Y.W. Bao, Y.C. Zhou, Microstructure, mechanical, thermal and oxidation properties of a Zr2[Al(Si)]4C5-SiC composite prepared by in situ reaction/hot-pressing, J. Eur. Ceram. Soc. 30 (2010) 2147-2154.
DOI: 10.1016/j.jeurceramsoc.2010.02.005
Google Scholar
[8]
W.H. Tuan, J.K. Guo, Toughening ceramics by adding two toughening agents, Key Eng. Mater. 224-226 (2002) 317-320.
DOI: 10.4028/www.scientific.net/kem.224-226.317
Google Scholar
[9]
L. Yu, J. Yang, T. Qiu, In-situ preparation and mechanical properties of (ZrB2+ ZrC)/Zr3[Al(Si)]4C6 composites, Key Eng. Mater. 602-603 (2014) 438-442.
DOI: 10.1016/j.jallcom.2014.06.001
Google Scholar
[10]
E.J. Cheng, Y. Li, J. Sakamoto, S.B. Han, H.P. Sun, J. Noble, H. Katsui, T. Goto, Mechanical properties of individual phases of ZrB2-ZrC eutectic composite measured by nanoindentation, J. Eur. Ceram. Soc. 37 (2017) 4223-4227.
DOI: 10.1016/j.jeurceramsoc.2017.05.031
Google Scholar
[11]
S.G. Chen, Y.Z. Gou, H. Wang, K. Jian, J. Wang, Preparation and characterization of high-temperature resistant ZrC-ZrB2 nanocomposite ceramics derived from single-source precursor, Mater. Design 117 (2017) 257-264.
DOI: 10.1016/j.matdes.2016.12.041
Google Scholar
[12]
L. Yu, J. Yang, T. Qiu, J.X. Zhang, L.M. Pan, Microstructure, mechanical, and thermal properties of (ZrB2+ZrC)/Zr3[Al(Si)]4C6 composite, J. Am. Ceram. Soc. 97 (2014) 2950-2956.
DOI: 10.1016/j.jallcom.2014.06.001
Google Scholar
[13]
L.F. He, Y.W. Bao, M.S. Li, J.Y. Wang, Y.C. Zhou, Oxidation of Zr2[Al(Si)]4C5 and Zr3[Al(Si)]4C6 in air, J. Mater. Res. 23 (2008) 3339-3346.
DOI: 10.1557/jmr.2008.0411
Google Scholar
[14]
X. Guo, Roles of alumina in zirconia for functional applications, J. Am. Ceram. Soc. 86 (2003) 1867-1873.
Google Scholar